【題目】已知函數(shù).

1)若,求曲線在點(diǎn)處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)若,求實(shí)數(shù)的取值范圍.

【答案】1;(2)見解析;(3

【解析】

(1)代入,再根據(jù)導(dǎo)數(shù)的幾何意義求解即可.

(2)易得,因?yàn)?/span>,故分兩種情況分析導(dǎo)數(shù)的正負(fù),從而得出單調(diào)區(qū)間即可.

(3)根據(jù)(2)中的單調(diào)性,兩種情況討論的單調(diào)性,并求出最值,再根據(jù)的值域滿足的關(guān)系結(jié)合題意求解即可.

1)若,則,故,,,

∴所求切線方程為;

2)函數(shù)的定義域?yàn)?/span>,,

當(dāng)時(shí),,函數(shù)上單調(diào)遞減,

當(dāng)時(shí),令,令,故函數(shù)單調(diào)遞減,在單調(diào)遞增;

3)當(dāng)時(shí),函數(shù)上單調(diào)遞減,

,而,不合題意;

當(dāng)時(shí),由(2)可知,,

i)當(dāng),即時(shí),,不合題意;

ii)當(dāng),即時(shí),,滿足題意;

iii)當(dāng),即時(shí),則,

,函數(shù)單調(diào)遞增,

∴當(dāng)時(shí),,

又∵函數(shù)的定義域?yàn)?/span>,

,滿足題意.

綜上,實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某外國(guó)語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.

(Ⅰ)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.

女生

男生

總計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

總計(jì)

附表及公式:

其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工資條里顯紅利,個(gè)稅新政人民心我國(guó)自1980年以來,力度最大的一次個(gè)人所得稅(簡(jiǎn)稱個(gè)稅)改革迎來了全面實(shí)施的階段.201911日實(shí)施的個(gè)稅新政主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收人個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括住房、子女教育和贍養(yǎng)老人等.新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及其對(duì)應(yīng)的稅率表如下:

舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元)

新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元)

繳稅基數(shù)

每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)

稅率(%

每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除

稅率(%

1

不超過1500元的部分

3

不超過3000元的部分

3

2

超過1500元至4500元的部分

10

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

超過12000元至25000元的部分

20

4

超過9000元至35000元的部分

25

超過25000元至35000元的部分

25

5

超過35000元至55000元的部分

30

超過35000元至55000元的部分

30

隨機(jī)抽取某市2020名同一收入層級(jí)的從業(yè)者的相關(guān)資料,經(jīng)統(tǒng)計(jì)分析,預(yù)估他們2019年的人均月收入24000元,統(tǒng)計(jì)資料還表明,他們均符合住房專項(xiàng)扣除;同時(shí),他們每人至多只有一個(gè)符合子女教育扣除的孩子,并且他們中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、既符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是;此外,他們均不符合其他專項(xiàng)附加扣除,新個(gè)稅政策下該市的專項(xiàng)附加扣除標(biāo)準(zhǔn)為:住房1000/月,子女教育每孩1000/月,贍養(yǎng)老人2000/月等.假設(shè)該市該收入層級(jí)的從業(yè)者都獨(dú)自享受專項(xiàng)附加扣除,將預(yù)估的該市該收入層級(jí)的從業(yè)者的人均月收入視為其個(gè)人月收入,根據(jù)樣本估計(jì)總體的思想,解決如下問題:

1)求在舊政策下該收入層級(jí)的從業(yè)者每月應(yīng)納的個(gè)稅;

2)設(shè)該市該收入層級(jí)的從業(yè)者2019年月繳個(gè)稅為X元,求X的分布列和期望;

3)根據(jù)新舊個(gè)稅方案,估計(jì)從20191月開始,經(jīng)過多少個(gè)月,該市該收入層級(jí)的從業(yè)者各月少繳納的個(gè)稅之和就超過2019年的人均月收入?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)S為正方形ABCD所在平面外一點(diǎn),△SBC是邊長(zhǎng)為2的等邊三角形,點(diǎn)E為線段SB的中點(diǎn).

1)證明:SD//平面AEC;

2)若側(cè)面SBC⊥底面ABCD,求平面ACE與平面SCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).

1)若過點(diǎn),且,求的斜率;

2)若,且的斜率為,當(dāng)時(shí),求軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)為其左頂點(diǎn),點(diǎn)的坐標(biāo)為,過點(diǎn)作直線與橢圓交于兩點(diǎn),當(dāng)垂直于軸時(shí),.

1)求該橢圓的方程;

2)設(shè)直線,分別交直線于點(diǎn),,線段的中點(diǎn)為,設(shè)直線的斜率分別為,,且,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若恒成立,求實(shí)數(shù)的最大值;

2)設(shè)函數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C.

1)求橢圓C的離心率;

2)設(shè)分別為橢圓C的左右頂點(diǎn),點(diǎn)P在橢圓C上,直線AP,BP分別與直線相交于點(diǎn)M,N.當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以M,N為直徑的圓是否經(jīng)過軸上的定點(diǎn)?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)處的切線與直線平行,求實(shí)數(shù)的值;

(2)試討論函數(shù)在區(qū)間上的最大值;

(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案