科目: 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(四川卷) 題型:044
已知數(shù)列{an}滿足a1=0,a2=2,且對(duì)任意m,n∈N*都有a2m+1+a2n-1=2m+n-1+2(m-n)2
(Ⅰ)求a3,a5;
(Ⅱ)設(shè)bn=a2n+1-a2n-1(n∈N*)證明:{bn}是等差數(shù)列;
(Ⅲ)設(shè)cn=(a2n+1-a2n-1)qn-1(a≠0,n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目: 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(四川卷) 題型:044
已知定點(diǎn)A(-1,0),F(xiàn)(2,0),定直線l:x=,不在x軸上的動(dòng)點(diǎn)P與點(diǎn)F的距離是它到直線l的距離的2倍.設(shè)點(diǎn)P的軌跡為E,過點(diǎn)F的直線交E于B、C兩點(diǎn),直線AB、AC分別交l于點(diǎn)M、N
(Ⅰ)求E的方程;
(Ⅱ)試判斷以線段MN為直徑的圓是否過點(diǎn)F,并說明理由.
查看答案和解析>>
科目: 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(四川卷) 題型:044
(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Sα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ-cosαsinβ.
(Ⅱ)已知△ABC的面積S==3,且cosB=,求cosC.
查看答案和解析>>
科目: 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(四川卷) 題型:044
已知正方體ABCD-的棱長為1,點(diǎn)M是棱A的中點(diǎn),點(diǎn)O是對(duì)角線B的中點(diǎn).
(Ⅰ)求證:OM為異面直線A和B的公垂線;
(Ⅱ)求二面角M-B-的大;
(Ⅲ)求三棱錐M-OBC的體積.
查看答案和解析>>
科目: 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(四川卷) 題型:044
某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為.甲、乙、丙三位同學(xué)每人購買了一瓶該飲料.
(Ⅰ)求甲中獎(jiǎng)且乙、丙都沒有中獎(jiǎng)的概率;
(Ⅱ)求中獎(jiǎng)人數(shù)ξ的分布列及數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目: 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(遼寧卷) 題型:044
選修4-4:坐標(biāo)系與參數(shù)方程
已知P為半圓C:(為參數(shù),0≤≤π)上的點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與C的弧的長度均為.
(Ⅰ)以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo);
(Ⅱ)求直線AM的參數(shù)方程.
查看答案和解析>>
科目: 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(遼寧卷) 題型:044
選修4-1:幾何證明選講
如圖,△ABC的角平分線AD的延長線交它的外接圓于點(diǎn)E
(Ⅰ)證明:△ABE∽△ADC
(Ⅱ)若△ABC的面積S=AD·AE,求∠BAC的大小.
查看答案和解析>>
科目: 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(遼寧卷) 題型:044
已知函數(shù)f(x)=(a+1)lnx+ax2+1
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)a<-1.如果對(duì)任意x1,x2∈(0,+∞),|f(x1)-f(x2)≥4||x1-x2|,求a的取值范圍.
查看答案和解析>>
科目: 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(遼寧卷) 題型:044
設(shè)橢圓C:(a>b>0)的左焦點(diǎn)為F,過點(diǎn)F的直線與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60°,.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)如果|AB|=,求橢圓C的方程.
查看答案和解析>>
科目: 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(遼寧卷) 題型:044
已知三棱錐P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com