相關(guān)習(xí)題
 0  150444  150452  150458  150462  150468  150470  150474  150480  150482  150488  150494  150498  150500  150504  150510  150512  150518  150522  150524  150528  150530  150534  150536  150538  150539  150540  150542  150543  150544  150546  150548  150552  150554  150558  150560  150564  150570  150572  150578  150582  150584  150588  150594  150600  150602  150608  150612  150614  150620  150624  150630  150638  266669 

科目: 來源: 題型:解答題

(本小題滿分13分)已知,函數(shù).
(1)當(dāng)時(shí)討論函數(shù)的單調(diào)性;
(2)當(dāng)取何值時(shí),取最小值,證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分13分)已知的圖像在點(diǎn)
的切線與直線平行.
(1)求a,b滿足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明:

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若,在(1,2)上為單調(diào)遞
減函數(shù)。求實(shí)數(shù)a的范圍。

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)=處取得極值.
(1)求實(shí)數(shù)的值;
(2) 若關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3) 證明:.參考數(shù)據(jù):

查看答案和解析>>

科目: 來源: 題型:解答題

(本題滿分12分)已知是直線上三點(diǎn),向量滿足:
,且函數(shù)定義域內(nèi)可導(dǎo)。
(1)求函數(shù)的解析式;
(2)若,證明:;
(3)若不等式都恒成立,求實(shí)數(shù)
的取值范圍。

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分15分)已知函數(shù)f(x)=,g(x)=alnx,a∈R.
(1)若曲線y=f(x)與曲線y=g(x)相交,且在交點(diǎn)處有相同的切線,求a的值及該切線的方程;
(2)設(shè)函數(shù)h(x)=f(x)-g(x),當(dāng)h(x)存在最小值時(shí),求其最小值φ(a)的解析式;
(3)對(2)中的φ(a),證明:當(dāng)a∈(0,+∞)時(shí),φ(a)≤1

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目: 來源: 題型:解答題

.(本小題滿分12分)
已知以函數(shù)f(x)=mx3-x的圖象上一點(diǎn)N(1,n)為切點(diǎn)的切線傾斜角為.
(1)求m、n的值;
(2)是否存在最小的正整數(shù)k,使得不等式f(x)≤k-1995,對于x∈[-1,3]恒成立?若存在,求出最小的正整數(shù)k,否則請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)f(x)=log3(ax+b)的部分圖象如圖所示.
(1)求f(x)的解析式與定義域;
(2)函數(shù)f(x)能否由y=log3x的圖象平移變換得到;
(3)求f(x)在[4,6]上的最大值、最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)f(x)=kx3-3(k+1)x2-2k2+4,若f(x)的單調(diào)減區(qū)間為(0,4).
(1)求k的值;
(2)對任意的t∈[-1,1],關(guān)于x的方程2x2+5x+a=f(t)總有實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案