科目: 來(lái)源: 題型:解答題
如圖菱形ABEF所在平面與直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,點(diǎn)H、G分別是線段EF、BC的中點(diǎn).
(1)求證:平面AHC平面;(2)點(diǎn)M在直線EF上,且平面,求平面ACH與平面ACM所成銳角的余弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面
底面,且,、分別為、的中點(diǎn).
(1)求證:平面;
(2)求證:面平面;
(3)在線段上是否存在點(diǎn),使得二面角的余弦值為?說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。
(1)請(qǐng)?jiān)诰段CE上找到一點(diǎn)F,使得直線BF∥平面ACD,并證明;
(2)求平面BCE與平面ACD所成銳二面角的大。
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(13分)(2011•天津)如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC中點(diǎn),PO⊥平面ABCD,PO=2,M為PD中點(diǎn).
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)證明:AD⊥平面PAC;
(Ⅲ)求直線AM與平面ABCD所成角的正切值.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(12分)(2011•湖北)如圖,已知正三棱柱ABC﹣A1B1C1的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為3,點(diǎn)E在側(cè)棱AA1上,點(diǎn)F在側(cè)棱BB1上,且AE=2,BF=.
(I) 求證:CF⊥C1E;
(II) 求二面角E﹣CF﹣C1的大小.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(13分)(2011•廣東)如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過(guò)軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).
(1)證明:O1′,A′,O2,B四點(diǎn)共面;
(2)設(shè)G為A A′中點(diǎn),延長(zhǎng)A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(12分)(2011•福建)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.
(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
(12分)(2011•重慶)如圖,在四面體ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°
(Ⅰ)若AD=2,AB=2BC,求四面體ABCD的體積.
(Ⅱ)若二面角C﹣AB﹣D為60°,求異面直線AD與BC所成角的余弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
如圖,在四棱錐中,為上一點(diǎn),面面,四邊形為矩形 ,,.
(1)已知,且∥面,求的值;
(2)求證:面,并求點(diǎn)到面的距離.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
如圖,四棱錐的底面是平行四邊形,,,面,設(shè)為中點(diǎn),點(diǎn)在線段上且.
(1)求證:平面;
(2)設(shè)二面角的大小為,若,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com