科目: 來源: 題型:解答題
(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點A,B;O為坐標(biāo)原點。
(1)若,試探究在曲線C上僅存在幾個點到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。
查看答案和解析>>
科目: 來源: 題型:解答題
(本題滿分15分)
已知點,是拋物線上相異兩點,且滿足.
(Ⅰ)若的中垂線經(jīng)過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分16分)
已知橢圓的離心率為,一條準(zhǔn)線.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點,是上的點,為橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于兩點.
①若,求圓的方程;
②若是l上的動點,求證:點在定圓上,并求該定圓的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分14分)
已知動圓P(圓心為點P)過定點A(1,0),且與直線相切。記動點P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點P的直線l與曲線C相切,且與直線相交于點Q。試研究:在x軸上是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分13分)
已知橢圓C的對稱軸為坐標(biāo)軸,且短軸長為4,離心率為。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點在y軸上,斜率為1的直線l與C相交于A,B兩點,且
,求直線l的方程。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
已知直線l1:4x:-3y+6=0和直線l2x=-p/2:.若拋物線C:y2=2px上的點到直線l1和直線l2的距離之和的最小值為2.
(I )求拋物線C的方程;
(II)若以拋物線上任意一點M為切點的直線l與直線l2交于點N,試問在x軸上是否存 在定點Q,使Q點在以MN為直徑的圓上,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
已知為坐標(biāo)原點,點分別在軸軸上運動,且=8,動點滿足 =,設(shè)點的軌跡為曲線,定點為直線交曲線于另外一點
(1)求曲線的方程;
(2)求 面積的最大值。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C中心在原點,焦點在軸上,一條經(jīng)過點且傾斜角余弦值為的直線交橢圓于A,B兩點,交軸于M點,又.
(1)求直線的方程;
(2)求橢圓C長軸的取值范圍。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
雙曲線與雙曲線有共同的漸近線,且經(jīng)過點,橢圓以雙曲線的焦點為焦點且橢圓上的點與焦點的最短距離為,求雙曲線和橢圓的方程。
查看答案和解析>>
科目: 來源: 題型:解答題
(本題滿分12分)
已知橢圓的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A、B兩點,點P(0,1),且|PA|=|PB|,求直線的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com