相關(guān)習(xí)題
 0  166224  166232  166238  166242  166248  166250  166254  166260  166262  166268  166274  166278  166280  166284  166290  166292  166298  166302  166304  166308  166310  166314  166316  166318  166319  166320  166322  166323  166324  166326  166328  166332  166334  166338  166340  166344  166350  166352  166358  166362  166364  166368  166374  166380  166382  166388  166392  166394  166400  166404  166410  166418  266669 

科目: 來(lái)源:不詳 題型:解答題

在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2
2
,∠ACB=90°,M是AA1的中點(diǎn),N是BC1的中點(diǎn)
(1)求證:MN平面A1B1C1;
(2)求點(diǎn)C1到平面BMC的距離;
(3)求二面角B-C1M-A1的平面角的余弦值大小.

查看答案和解析>>

科目: 來(lái)源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,四邊形ABCD為菱形,∠ABC=60°,AB=2,△PCB為正三角形,且平面PCB⊥平面ABCD,M,N分別為BC,PD的中點(diǎn).
(1)求證:MN面APB;
(2)求二面角B-NC-P的余弦值;
(3)求四棱錐P-ABCD被截面MNC分成的上下兩部分體積之比.

查看答案和解析>>

科目: 來(lái)源:不詳 題型:填空題

正方體ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于______.

查看答案和解析>>

科目: 來(lái)源:不詳 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
(Ⅰ)求證:平面PAC⊥平面PBC;
(Ⅱ)若AB=2,AC=1,PA=1,求證:二面角C-PB-A的余弦值.

查看答案和解析>>

科目: 來(lái)源:不詳 題型:解答題

已知幾何體A-BCED的三視圖如圖所示,其中側(cè)視圖和俯視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形.求:
(1)異面直線DE與AB所成角的余弦值;
(2)二面角A-ED-B的正弦值;
(3)此幾何體的體積V的大。

查看答案和解析>>

科目: 來(lái)源:不詳 題型:解答題

在三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D,又知BA1⊥AC1
(1)求證:AC1⊥平面A1BC;
(2)求二面角A1-BC-A的大;
(3)求CC1到平面A1AB的距離.

查看答案和解析>>

科目: 來(lái)源:不詳 題型:解答題

已知梯形ABCD中,ADBC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EFBC,AE=x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF(如圖).
(1)當(dāng)x=2時(shí),求證:BD⊥EG;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
(3)當(dāng)f(x)取得最大值時(shí),求二面角D-BF-C的余弦值.

查看答案和解析>>

科目: 來(lái)源:不詳 題型:解答題

已知三棱柱ABC-A1B1C1的底面為直角三角形,則棱與底面垂直,如圖所示,D是棱CC1的中點(diǎn),且∠ACB=90°,BC=1,AC=
3
,AA1=
6

(Ⅰ)證明:A1D⊥平面AB1C1
(Ⅱ)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目: 來(lái)源:不詳 題型:解答題

在三棱錐S-ABC中,如圖,∠SAB=∠SAC=∠ACB=90°,AC=2,
BC=
13
,SB=
29

(1)證明:SC⊥BC;
(2)求側(cè)面SBC與底面ABC所成的二面角大;
(3)(理)求異面直線SC與AB所成的角的大。ㄓ梅慈呛瘮(shù)表示).
(文)求三棱錐的體積VS-ABC

查看答案和解析>>

科目: 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,設(shè)E為PC中點(diǎn),點(diǎn)F在線段PD上且PF=2FD.
(Ⅰ)求證:BE平面ACF;
(Ⅱ)設(shè)二面角A-CF-D的大小為θ,若|cosθ|=
42
14
,求PA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案