科目: 來源:2014年高考數(shù)學考前復(fù)習沖刺穿插滾動練習(一)(解析版) 題型:選擇題
若函數(shù)y=f(x)在R上可導,且滿足不等式xf′(x)>-f(x)恒成立,且常數(shù)a,b滿足a>b,則下列不等式一定成立的是 ( )
A.a(chǎn)f(b)>bf(a) B.a(chǎn)f(a)>bf(b)
C.a(chǎn)f(a)<bf(b) D.a(chǎn)f(b)<bf(a)
查看答案和解析>>
科目: 來源:2014年高考數(shù)學考前復(fù)習沖刺穿插滾動練習(一)(解析版) 題型:選擇題
設(shè)函數(shù)f(x)滿足x2f′(x)+2xf(x)=,f(2)=,則x>0時,f(x)( )
A.有極大值,無極小值
B.有極小值,無極大值
C.既有極大值又有極小值
D.既無極大值也無極小值
查看答案和解析>>
科目: 來源:2014年高考數(shù)學考前復(fù)習沖刺穿插滾動練習(一)(解析版) 題型:填空題
設(shè)f(x)=-x3+x2+2ax,若f(x)在(,+∞)上存在單調(diào)遞增區(qū)間,則a的取值范圍為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學考前復(fù)習沖刺穿插滾動練習(一)(解析版) 題型:填空題
方程x2+(2m-1)x+4-2m=0的一根大于2,一根小于2,那么實數(shù)m的取值范圍是__________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學考前復(fù)習沖刺穿插滾動練習(一)(解析版) 題型:填空題
函數(shù)y=f(x)為定義在R上的減函數(shù),函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,x,y滿足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O為坐標原點,則當1≤x≤4時,的取值范圍為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學考前復(fù)習沖刺穿插滾動練習(一)(解析版) 題型:填空題
已知定義在R上的偶函數(shù)滿足:f(x+4)=f(x)+f(2),且當x∈[0,2]時,y=f(x)單調(diào)遞減,給出以下四個命題:
①f(2)=0;
②x=-4為函數(shù)y=f(x)圖象的一條對稱軸;
③函數(shù)y=f(x)在[8,10]上單調(diào)遞增;
④若方程f(x)=m在[-6,-2]上的兩根為x1,x2,則x1+x2=-8.
以上命題中所有正確命題的序號為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學考前復(fù)習沖刺穿插滾動練習(一)(解析版) 題型:解答題
設(shè)集合A={x|x2<4},B={x|1<}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集為B,求a,b的值.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學考前復(fù)習沖刺穿插滾動練習(一)(解析版) 題型:解答題
已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學考前復(fù)習沖刺穿插滾動練習(一)(解析版) 題型:解答題
若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知a,b是實數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點.
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導函數(shù)g′(x)=f(x)+2,求g(x)的極值點.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學考前復(fù)習沖刺穿插滾動練習(一)(解析版) 題型:解答題
已知函數(shù)f(x)=xk+b(其中k,b∈R且k,b為常數(shù))的圖象經(jīng)過A(4,2)、B(16,4)兩點.
(1)求f(x)的解析式;
(2)如果函數(shù)g(x)與f(x)的圖象關(guān)于直線y=x對稱,解關(guān)于x的不等式:g(x)+g(x-2)>2a(x-2)+4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com