相關習題
 0  200105  200113  200119  200123  200129  200131  200135  200141  200143  200149  200155  200159  200161  200165  200171  200173  200179  200183  200185  200189  200191  200195  200197  200199  200200  200201  200203  200204  200205  200207  200209  200213  200215  200219  200221  200225  200231  200233  200239  200243  200245  200249  200255  200261  200263  200269  200273  200275  200281  200285  200291  200299  266669 

科目: 來源: 題型:

已知△ABC的內(nèi)角A、B、C對的邊分別為a,b,c,sinA+
2
sinB=2sinC,b=3,則cosC的最小值等于
 

查看答案和解析>>

科目: 來源: 題型:

甲、乙兩所學校高二年級分別有1200人,1000人,為了了解兩所學校全體高二年級學生在該地區(qū)四校聯(lián)考的數(shù)學成績情況,采用分層抽樣方法從兩所學校一共抽取了110名學生的數(shù)學成績,并作出了頻數(shù)分布統(tǒng)計表如下:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34815
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x32
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(Ⅰ)計算x,y的值;
(Ⅱ)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,請分別估計兩所學校數(shù)學成績的優(yōu)秀率;
(Ⅲ)若規(guī)定考試成績在[140,150]內(nèi)為特優(yōu),甲、乙兩所學校從抽取的5張?zhí)貎?yōu)試卷中隨機抽取兩張進行張貼表揚,求這兩張試卷來自不同學校的概率.

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(
3
cosx,sinx),
b
=(sinx,
3
cosx)
,函數(shù)f(x)=
a
a
+
a
b

(1)求函數(shù)f(x)的最小正周期;
(2)已知f(
α
2
)=3
,且α∈(0,π),求α的值.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,且過點(
2
,1)過點C(-1,0)且斜率為k的直線l與橢圓相交于不同的兩點A、B.
(Ⅰ)求橢圓的方程;
(Ⅱ)若線段AB的中點的橫坐標為-
1
2
,求斜率k的值;
(Ⅲ)在x軸上是否存在點M,使
MA
MB
+
5
3k2+1
是與k無關的常數(shù)?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知cos(
π
2
-θ)=
3
5
,θ∈(
π
2
,π).
(Ⅰ)求cosθ的值;
(Ⅱ)求函數(shù)f(x)=
3
sinxcosx-
5
6
sinθcos2x的增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

已知sin(π-a)=2cos(π+a)sin2a-sinacosa-2cos2a=
 

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C1和雙曲線C2有公共焦點F1,F(xiàn)2,C1的離心率為e1,C2離心率為e2,p為C1與C2的一個公共點,且滿足
1
e12
+
1
e22
=2,則
PF1
PF2
的值為( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目: 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,左頂點為上頂點為B,△BF1F2是等邊三角形,橢圓C上的點到F1的距離的最大值為3.
(1)求橢圓C的方程;
(2)過F1任意作一條直線l交橢圓C于M、N兩點(均不是橢圓的頂點),設直線AM與直線l0x=-4交于P點,直線AN與l0交于Q點,請判斷點F1與以線段PQ為直徑的圓 的位置關系.

查看答案和解析>>

科目: 來源: 題型:

設數(shù)列{an}的前n項和為Sn,數(shù)列{Sn}的前n項和為Tn,且2Tn=4Sn-(n2+n),n∈N*
(Ⅰ)證明:數(shù)列{an+1}為等比數(shù)列;
(Ⅱ)設bn=
n+1
an+1
,證明:b1+b2+…+bn<3.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,已知AB=
6
,AC=4
2
,A=45°,若平面上一點P滿足
BP
BC
+(1-λ)
BA
(λ>0),且△ABP的面積為
3
6
2
,則λ等于
 

查看答案和解析>>

同步練習冊答案