相關(guān)習(xí)題
 0  201217  201225  201231  201235  201241  201243  201247  201253  201255  201261  201267  201271  201273  201277  201283  201285  201291  201295  201297  201301  201303  201307  201309  201311  201312  201313  201315  201316  201317  201319  201321  201325  201327  201331  201333  201337  201343  201345  201351  201355  201357  201361  201367  201373  201375  201381  201385  201387  201393  201397  201403  201411  266669 

科目: 來源: 題型:

給出下列結(jié)論:
①當(dāng)m=-
3
4
時(shí),圓C:(x-1)2+(y-2)2=25倍直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)截得的弦長(zhǎng)最短.
②若方程a2x2+(a+2)y2+2ax+a=0表示圓,則a=-1
③已知△ABC中,頂點(diǎn)A(2,1),B(-1,-1),∠C的平分線所在直線方程為x+2y-1=0,則頂點(diǎn)C的坐標(biāo)為(
31
5
,-
13
5

④過點(diǎn)P引三條不共面的直線PA,PB,PC,其中∠BPC=90°,∠APC=∠APB=60°,且PA=PB=PC,則平面ABC⊥平面BPC,
其中正確的結(jié)論個(gè)數(shù)是(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目: 來源: 題型:

過定點(diǎn)(1,2)一定可作兩條直線與圓x2+y2+kx+2y+k2-15=0相切,則k的取值范圍是
 

查看答案和解析>>

科目: 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足an+1=
3Sn
n
+n+1,n∈N*,且S4=18,令bn=
an
n

(1)求b1,b2,b3的值
(2)求數(shù)列{bn}的通項(xiàng)公式
(3)求證:對(duì)一切n∈N*,有
1
a1
+
1
a2
+…
1
an
1
2

查看答案和解析>>

科目: 來源: 題型:

已知等差數(shù)列{an},公差d>0,a1+a2+a3=6,且a3-a1,2a2,a8成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
an
2n
,求證:b1+b2+b3+…+bn<2.

查看答案和解析>>

科目: 來源: 題型:

已知an=logn+1(n+2)(n∈N+),把使得乘積a1•a2•a3…an的整數(shù)的數(shù)n叫做“穿越數(shù)”,并把這些“穿越數(shù)”由小到大排序構(gòu)成的數(shù)列記為{bn}(m∈N+
(1)求區(qū)間(1,2015)內(nèi)的所有“穿越數(shù)”的和;
(2)證明:
1
b1
+
1
b2
+…+
1
bn
5
6

查看答案和解析>>

科目: 來源: 題型:

已知兩條不同的直線m,l,兩個(gè)不同的平面α,β,在下列條件中,可以得出α⊥β的是
 
.(填序號(hào))
①m⊥l,l∥α,l∥β;  ②m⊥l,α∩β=l,m?α;
③m∥l,m⊥α,l⊥β;④m∥l,l⊥β,m?α.

查看答案和解析>>

科目: 來源: 題型:

若用m,n表示兩條不同的直線,用α表示一個(gè)平面,則下列命題正確的是( 。
A、若m∥n,n?α,則m∥α
B、若m∥α,n?α,則m∥n
C、若m⊥n,n?α,則m⊥α
D、若m⊥α,n?α,則m⊥n

查看答案和解析>>

科目: 來源: 題型:

某射手射擊1次,擊中目標(biāo)的概率為
2
3
.已知此人連續(xù)射擊4次,設(shè)每次射擊是否擊中目標(biāo)相互間沒有影響,則他“擊中3次且恰有兩次連中”的概率為
 

查看答案和解析>>

科目: 來源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,已知點(diǎn)(an,an+1)(n∈N*)在函數(shù)y=3x的圖象上,且S3=26.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成公差為dn的等差數(shù)列,求數(shù)列{
1
dn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:

有3位同學(xué)參加測(cè)試,假設(shè)每位同學(xué)能通過測(cè)試的概率都是
1
3
,且各人能否通過測(cè)試是相互獨(dú)立的,則至少有一位同學(xué)能通過測(cè)試的概率為( 。
A、
8
27
B、
4
9
C、
2
3
D、
19
27

查看答案和解析>>

同步練習(xí)冊(cè)答案