相關(guān)習(xí)題
 0  201907  201915  201921  201925  201931  201933  201937  201943  201945  201951  201957  201961  201963  201967  201973  201975  201981  201985  201987  201991  201993  201997  201999  202001  202002  202003  202005  202006  202007  202009  202011  202015  202017  202021  202023  202027  202033  202035  202041  202045  202047  202051  202057  202063  202065  202071  202075  202077  202083  202087  202093  202101  266669 

科目: 來源: 題型:

設(shè)函數(shù)f(x)是定義域在(0,+∞)上的單調(diào)函數(shù),且對于任意正數(shù)x,y有f(xy)=f(x)+f(y),已知f(2)=1.
(1)求f(
1
2
)的值;
(2)一個各項均為正數(shù)的數(shù)列{an}滿足:f(Sn)=f(an)+f(an+1)-1(n∈N*),其中Sn是數(shù)列{an}的前n項的和,求數(shù)列{an}的通項公式;
(3)在(2)的條件下,是否存在正數(shù)M,使
2n•a1•a2…an≥M
2n+1
(2a2-1)
-(2a2-1)…(2an-1)對一切n∈N*成立?若存在,求出M的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù)f(1)=0,當(dāng)x>0時,有
xf′(x)-f(x)
x2
>0成立,則不等式f(x)>0的解集是(  )
A、(1,+∞)
B、(-1,0)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,當(dāng)x>0時,有xf′(x)-f(x)>0成立,則不等式f(x)>0的解集是(  )
A、(1,+∞)
B、(-1,0)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)是滿足f(
1
2
+x)=f(
1
2
-x)的奇函數(shù),當(dāng)0≤x≤1時,f(x)=-2x2+2x,則f(-
5
2
)
=
 

查看答案和解析>>

科目: 來源: 題型:

定義:a*b的運算為a*b=
|b|,a≥b
a,a<b
,設(shè)f(x)=(0*x)x-(2*x),則f(x)在區(qū)間[-2,3]上的最小值為
 

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=(
3
sinωx+cosωx)cosωx-
1
2
(ω>0),其相鄰兩個最值點的橫坐標(biāo)之差為2π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C的對邊分別是a、b、c滿足tanB=
3
ac
a2+c2-b2
且B為銳角,求函數(shù)f(A)的值域.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=sinx•(2cosx-sinx)+cos2x.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)設(shè)
π
4
<α<
π
2
,且f(α)=-
5
2
13
,求sin2α的值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x2+2xtanθ-1,θ∈(-
π
2
,
π
2
).
(Ⅰ)若f(x)在x∈[-1,
3
]上為單調(diào)函數(shù),求θ的取值范圍;
(Ⅱ)若當(dāng)θ∈[-
π
3
,
π
3
]時,y=f(x)在[-1,
3
]上的最小值為g(θ),求g(θ)的表達(dá)式.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
-
x
,x≥0
x2-1,x<0
,則f(f(2))=( 。
A、-1B、-3C、1D、3

查看答案和解析>>

科目: 來源: 題型:

如圖,數(shù)表滿足:
(1)第n行首尾兩數(shù)均為n;
(2)表中遞推關(guān)系類似楊輝三角,記第n(n>1)行第2個數(shù)為f(n).根據(jù)表中上下兩行數(shù)據(jù)關(guān)系,可以將f(n)用f(n-1)表示,得其遞推公式,f(n)=
 

查看答案和解析>>

同步練習(xí)冊答案