相關(guān)習(xí)題
 0  204938  204946  204952  204956  204962  204964  204968  204974  204976  204982  204988  204992  204994  204998  205004  205006  205012  205016  205018  205022  205024  205028  205030  205032  205033  205034  205036  205037  205038  205040  205042  205046  205048  205052  205054  205058  205064  205066  205072  205076  205078  205082  205088  205094  205096  205102  205106  205108  205114  205118  205124  205132  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=x2-1,g(x)=a|x-1|,
(1)若關(guān)于x的方程|f(x)|=g(x)只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(2)設(shè)h(x)=|f(x)|+g(x),當(dāng)x∈[-2,2]時(shí),不等式h(x)≤a2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

關(guān)于x的方程x2-2|x|-(2k+1)2=0,下列判斷:
①存在實(shí)數(shù)k,使得方程有兩個(gè)相等的實(shí)數(shù)根.
②存在實(shí)數(shù)k,使得方程有兩個(gè)不同的實(shí)數(shù)根;
③存在實(shí)數(shù)k,使得方程有三個(gè)不同的實(shí)數(shù)根;
④存在實(shí)數(shù)k,使得方程有四個(gè)不同的實(shí)數(shù)根
其中正確的有
 
(填相應(yīng)的序號(hào)).

查看答案和解析>>

科目: 來源: 題型:

已知平面向量
α
,
β
滿足|
α
|=|
β
|=1,且
α
β
-
α
的夾角為120°,則|(1-t)
α
+2t
β
|(t∈R)的取值范圍是
 

查看答案和解析>>

科目: 來源: 題型:

如圖1,在矩形ABCD中,AB=3,AD=
3
,E為CD邊上的點(diǎn),且EC=2DE,AE與BD相交于點(diǎn)O,現(xiàn)沿AE將△ADE折起,連接DB,DC得到如圖2所示的幾何體.

(1)求證:AE⊥平面DOB;
(2)當(dāng)平面ADE⊥平面ABCE時(shí),求二面角A-DE-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標(biāo)系xOy中.已知向量
a
b
,|
a
|=|
b
|=1,
a
b
=0,點(diǎn)Q滿足
OQ
=2
2
a
+
b
),曲線C={P|
OP
=
a
cosθ+
b
sinθ,0≤θ≤2π},區(qū)域Ω={P|0<r≤|
PQ
|≤R,r<R}.若C∩Ω為兩段分離的曲線,則( 。
A、3<r<5<R
B、3<r<5≤R
C、0<r≤3<R<5
D、3<r<R<5

查看答案和解析>>

科目: 來源: 題型:

已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E為AA1的中點(diǎn),則異面直線BE與CD1所成角的余弦值為
 

查看答案和解析>>

科目: 來源: 題型:

已知a,b是兩條直線,α,β是兩個(gè)平面,則下列說法中正確的是( 。
A、若a∥b,b∥α,則a∥α
B、若a⊥b,b⊥α,則a⊥α
C、若α∥β,a?α,則a∥β
D、若α⊥β,a?α,則a⊥β

查看答案和解析>>

科目: 來源: 題型:

已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1.
(Ⅰ)證明:面PAD⊥面PCD;
(Ⅱ)求AC與PB所成的角的余弦值;
(Ⅲ)求線BP與面PAC所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,以原點(diǎn)為圓心,橢圓的短軸端點(diǎn)與雙曲線
y2
2
-x2
=1的焦點(diǎn)重合,過點(diǎn)P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
OA
OB
的取值范圍;
(Ⅲ)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目: 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)棱PA⊥底面ABCD,PA=AD=1,E,F(xiàn)分別為PA、AC的中點(diǎn).
(Ⅰ)求證:EF∥平面PAB;
(Ⅱ)求點(diǎn)F到平面ABE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案