相關(guān)習(xí)題
 0  205877  205885  205891  205895  205901  205903  205907  205913  205915  205921  205927  205931  205933  205937  205943  205945  205951  205955  205957  205961  205963  205967  205969  205971  205972  205973  205975  205976  205977  205979  205981  205985  205987  205991  205993  205997  206003  206005  206011  206015  206017  206021  206027  206033  206035  206041  206045  206047  206053  206057  206063  206071  266669 

科目: 來源: 題型:

在直角坐標(biāo)系xOy中,直線l經(jīng)過點(diǎn)P(-1,0),其傾斜角為α,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系,設(shè)曲線C的極坐標(biāo)方程為ρ2-6ρcosθ+5=0,若直線l與曲線C有公共點(diǎn),則α的取值范圍是( 。
A、(0,
π
6
B、[
π
6
,
6
]
C、(
π
6
,
π
3
]∪[
3
6
]
D、[0,
π
6
]∪[
6
,π)

查看答案和解析>>

科目: 來源: 題型:

下列判斷正確的是(  )
A、函數(shù)f(x)=
x2-2x
x-2
是奇函數(shù)
B、函數(shù)f(x)=(1-x)
1+x
1-x
是偶函數(shù)
C、函數(shù)f(x)=
16-x2
|x+6|+|x-4|
是偶函數(shù)
D、函數(shù)f(x)=1既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,將f(x)的圖象向左平移
π
3
個(gè)長度單位,所得圖象對(duì)應(yīng)的函數(shù)解析式為( 。
A、f(x)=sin2x
B、f(x)=-sin2x
C、f(x)=sin(2x-
3
D、f(x)=sin(2x+
3

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(1,1),
b
=(x,1),
u
=
a
+2
b
,
v
=2
a
-
b

(Ⅰ)若
u
v
,求x;
(Ⅱ)若(
a
+
b
)⊥(
a
-
b
),求x.

查看答案和解析>>

科目: 來源: 題型:

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
②f(x)=
2013-x2
+
x2-2013
既是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí),f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數(shù).
其中正確說法的序號(hào)是
 

查看答案和解析>>

科目: 來源: 題型:

在直角坐標(biāo)系中,直線l的參數(shù)方程為
x=t
y=kt+1
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,已知曲線C的極坐標(biāo)方程為ρ=2cosθ,若直線l與曲線C相切,則k的值是
 

查看答案和解析>>

科目: 來源: 題型:

已知F1、F2為雙曲線C:x2-y2=1的左、右焦點(diǎn),點(diǎn)P在C上,∠F1PF2=60°,則P到x軸的距離為
 

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=
1
x2+1
,x<0
0,x=0
x-
1
x
,x>0
,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=cosx+2sinx在區(qū)間[0,
π
2
]上的最小值為
 

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的通項(xiàng)an=ln[1+n(n+1)],前n項(xiàng)和為Sn,證明不等式:Sn>2n-3.

查看答案和解析>>

同步練習(xí)冊答案