相關(guān)習(xí)題
 0  208423  208431  208437  208441  208447  208449  208453  208459  208461  208467  208473  208477  208479  208483  208489  208491  208497  208501  208503  208507  208509  208513  208515  208517  208518  208519  208521  208522  208523  208525  208527  208531  208533  208537  208539  208543  208549  208551  208557  208561  208563  208567  208573  208579  208581  208587  208591  208593  208599  208603  208609  208617  266669 

科目: 來源: 題型:

一簡單幾何體ABCDE的一個(gè)面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC⊥平面ABC;
①證明:平面ACD⊥平面ADE;
②已知AB=2,AC=
2
,二面角C-AE-B的平面角為
π
3
,求|BE|的長.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:當(dāng)x>1時(shí),f(x)-
2
3
x3+(a+1)lnx<0.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=lnx+
1
x

(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)-
1
x
+ax2-2x有兩個(gè)不同的極值點(diǎn).其極小值為M,試比較2M與-3的大小,并說明理由;
(3)設(shè)q>p>2,求證:當(dāng)x∈(p,q)時(shí),
f(x)-f(p)
x-p
f(x)-f(p)
x-q

查看答案和解析>>

科目: 來源: 題型:

如圖,在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M、N分別為AB、SB的中點(diǎn).
(1)求證:AC⊥SB;
(2)求二面角N-CM-B的大。
(3)求點(diǎn)B到平面CMN的距離.

查看答案和解析>>

科目: 來源: 題型:

已知等差數(shù)列{an}的公差為d,求證:
am-an
m-n
=d.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
1+ax
1-x
e-2x
(1)若函數(shù)y=f(x)在x=2時(shí)有極值,求a的值;
(2)若對任意x∈(0,1)時(shí),f(x)>1恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知?jiǎng)狱c(diǎn)P到定點(diǎn)F(1,0)的距離比到定直線x+2=0的距離少1.
(1)求動(dòng)點(diǎn)P的軌跡Γ的方程;
(2)設(shè)A(橫坐標(biāo)大于1)、B(縱坐標(biāo)大于0)為軌跡Γ上的相異兩點(diǎn),問是否存在實(shí)數(shù)λ,使得
AB
AF
且|AB|=
16
3
,若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

某個(gè)體戶計(jì)劃經(jīng)銷A、B兩種商品,據(jù)調(diào)查統(tǒng)計(jì),當(dāng)投資額為x(x≥0)萬元時(shí),經(jīng)銷A、B商品中所獲得的收益分別為f(x)萬元與g(x)萬元.其中f(x)=x+1;g(x)=
10x+1
x+1
(0≤x≤3)
-x2+9x-12(3<x≤5)
.如果該個(gè)體戶準(zhǔn)備投入5萬元經(jīng)營這兩種商品,請你幫他制定一個(gè)資金投入方案,使他能獲得最大收益,并求出其最大收益.

查看答案和解析>>

科目: 來源: 題型:

為了了解一個(gè)小魚塘里的總產(chǎn)量,從這個(gè)小魚塘中的不同位置捕撈出12條魚,稱得重量如下(單位:千克):
1.15,1.04,1.11,1.07,1.10,1.02,
1.05,1.16,1.09,1.13,1.10,1.18.
將上面捕撈出來的12條魚分別作一記號后再放回魚塘,幾天后從魚塘中的不同地方捕撈出108條魚,其中帶有記號的魚有3條,則魚塘中的總產(chǎn)量約為多少?

查看答案和解析>>

科目: 來源: 題型:

如圖,某地有兩棟樓AB、CD,間隔50米,已知AB樓高50米,AC為水平地面,P為AC中點(diǎn),現(xiàn)在P處測得兩樓頂張角∠BPD=45°,試求樓CD的高度.

查看答案和解析>>

同步練習(xí)冊答案