相關(guān)習(xí)題
 0  208984  208992  208998  209002  209008  209010  209014  209020  209022  209028  209034  209038  209040  209044  209050  209052  209058  209062  209064  209068  209070  209074  209076  209078  209079  209080  209082  209083  209084  209086  209088  209092  209094  209098  209100  209104  209110  209112  209118  209122  209124  209128  209134  209140  209142  209148  209152  209154  209160  209164  209170  209178  266669 

科目: 來源: 題型:

已知橢圓C過點A(1,
3
2
),兩焦點為F1(-
3
,0)、F2
3
,0),O是坐標原點,不經(jīng)過原點的直線l:y=kx+m與橢圓交于兩不同點P、Q.
(1)求橢圓C的方程;     
(2)當(dāng)k=1時,求△OPQ面積的最大值;
(3)若直線OP、PQ、OQ的斜率依次成等比數(shù)列,求直線l的斜率k.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ln(x-1)-k(x-1)+1.
(1)當(dāng)k=1時,求函數(shù)f(x)的最大值;
(2)若函數(shù)f(x)沒有零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=a(1-|x-1|),a為常數(shù),且a>1.
(1)證明函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
(2)當(dāng)a=2時,討論方程f(f(x))=m解的個數(shù);
(3)若x0滿足f(f(x0))=x0,但f(x0)≠x0,則稱x0為函數(shù)f(x)的二階周期點,則f(x)是否有兩個二階周期點,說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓的焦點F1(0,-1)和F2(0,1),離心率e=
1
2

(1)求橢圓的方程;
(2)設(shè)點P在橢圓上,且|PF1|-|PF2|=1,求△PF1F2的面積.

查看答案和解析>>

科目: 來源: 題型:

已知棱錐V-ABCD的高為h,底面是矩形,側(cè)棱VD垂直于底面ABCD,另外兩側(cè)面VBC,VBA和底面分別成30°和45°角,求棱錐的全面積S

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,0<φ<
π
2
)的部分圖象如圖.
(1)求函數(shù)f(x)的解析式;
(2)求g(x)=f(x+
π
12
)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,已知a、b、c成等比數(shù)列,且cosB=
3
4

(Ⅰ)求
1
tanA
+
1
tanC
的值;
(Ⅱ)設(shè)
BA
BC
=
3
2
,求a、c的值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=(x-1)ex-kx2,(k∈R).
(1)若x=0是f(x)的極大值點,求實數(shù)k的取值范圍;
(2)當(dāng)k∈(
1
2
,1]時,求函數(shù)f(x)在[0,k]上的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)g(x)=ax,h(x)=x2-xlna-b(a>0且a≠1,b∈R),設(shè)f(x)=g(x)+h(x).
(Ⅰ)試判斷y=f(x)在(0,+∞)上的單調(diào)性;
(Ⅱ)若函數(shù)y=g(x)-h(x)在x=0處的切線的傾斜角為銳角,且對函數(shù)f(x),?x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1成立,試求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系xOy中,點P是圓x2+y2=4上一動點,PD⊥x軸于點D,記滿足
OM
=
1
2
OP
+
OD
)的動點M的軌跡為Γ.
(Ⅰ)求軌跡Γ的方程;
(Ⅱ)已知直線l:y=kx+m與軌跡F交于不同兩點A,B,點G是線段AB中點,射線OG交軌跡F于點Q,且
OQ
OG
,λ∈R.
①證明:λ2m2=4k2+1;
②求△AOB的面積S(λ)的解析式,并計算S(λ)的最大值.

查看答案和解析>>

同步練習(xí)冊答案