相關習題
 0  209056  209064  209070  209074  209080  209082  209086  209092  209094  209100  209106  209110  209112  209116  209122  209124  209130  209134  209136  209140  209142  209146  209148  209150  209151  209152  209154  209155  209156  209158  209160  209164  209166  209170  209172  209176  209182  209184  209190  209194  209196  209200  209206  209212  209214  209220  209224  209226  209232  209236  209242  209250  266669 

科目: 來源: 題型:

給定有限單調(diào)遞增數(shù)列{xn}(n∈N*,n≥2)且xi≠0(1≤i≤n),定義集合A={(xi,xj)|1≤i,j≤n,且i,j∈N*}.若對任意點A1∈A,存在點A2∈A使得OA1⊥OA2(O為坐標原點),則稱數(shù)列{xn}具有性質(zhì)P.
(Ⅰ)給出下列四個命題,其中正確的是
 
(填上所有正確有命題的序號)
①數(shù)列{xn}:-2,2具有性質(zhì)P;
②數(shù)列{yn}:-2,-1,1,3具有性質(zhì)P;
③若數(shù)列{xn}具有P,則{xn}中一定存在兩項xi,xj,使得xi+xj=0;
④若數(shù)列{xn}具有性質(zhì)P,x1=-1,x2>0且xn>1(n≥3),則x2=1.
(Ⅱ)若數(shù)列{xn}只有2014項且具有性質(zhì)P,x1=-1,x3=2,則{xn}的所有項和S2014=
 

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)的定義域為D,若存在閉區(qū)間[a,b]⊆D,使得函數(shù)f(x)滿足:(1)f(x)在[a,b]內(nèi)是單調(diào)函數(shù);(2)f(x)在[a,b]上的值域為[ka,kb],則稱區(qū)間[a,b]為y=f(x)的“和諧k區(qū)間”.
(Ⅰ)試判斷函數(shù)g(x)=x2,h(x)=lnx是否存在“和諧2區(qū)間”,若存在,找出一個符合條件的區(qū)間;若不存在,說明理由.
(Ⅱ)若函數(shù)f(x)=ex存在“和諧k區(qū)間”,求正整數(shù)k的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B兩點,且線段AB的中點在直線l:x-2y=0上,求此橢圓的離心率.

查看答案和解析>>

科目: 來源: 題型:

△ABC中,已知cosA=
3
5
,sinB=
5
13
,求sinC值.

查看答案和解析>>

科目: 來源: 題型:

如圖所示,設l1∥l2∥l3,AB:BC=3:2,DF=10,則DE=
 

查看答案和解析>>

科目: 來源: 題型:

已知a為正常數(shù),點A,B的坐標分別是(-a,0),(a,0),直線AM,BM相交于點M,且它們的斜率之積是-
1
a2

(1)求點M的軌跡方程,并指出方程所表示的曲線;
(2)當a=
2
時,過點F(1,0)作直線l∥AM,記l與(1)中軌跡相交于兩點P,Q,動直線AM與y軸交與點N,證明
|PQ|
|AM||AN|
為定值.

查看答案和解析>>

科目: 來源: 題型:

設A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上的任意兩點.M為AB的中點,M的橫坐標為
1
2

(1)求M的縱坐標.
(2)設Sn=f(
1
n+1
)+f(
2
n+1
)+…+f(
n
n+1
)
,其中n∈N*,求Sn
(3)對于(2)中的Sn,已知an=(
1
Sn+1
)2
,其中n∈N*,設Tn為數(shù)列{an}的前n項的和,求證
4
9
Tn
5
3

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=1+2sin(ωx-
π
3
)(0<ω<10)的圖象過點(-
π
12
,-1)
(1)求函數(shù)f(x)的解析式;
(2)若y=t在x∈[
π
3
5
6
π]上與f(x)恒有交點,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an},{bn},a1=1,an=an-1+2n-1,bn=
an-1+1
anan+1
,Sn為數(shù)列{bn}的前n項和,Tn為數(shù)列{Sn}的前n項和.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{bn}的前n項和Sn;
(Ⅲ)求證:Tn
n
2
-
1
3

查看答案和解析>>

科目: 來源: 題型:

設函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過點P(1,0)且在點P處的切線斜率為2,求a、b的值.

查看答案和解析>>

同步練習冊答案