相關(guān)習(xí)題
 0  210128  210136  210142  210146  210152  210154  210158  210164  210166  210172  210178  210182  210184  210188  210194  210196  210202  210206  210208  210212  210214  210218  210220  210222  210223  210224  210226  210227  210228  210230  210232  210236  210238  210242  210244  210248  210254  210256  210262  210266  210268  210272  210278  210284  210286  210292  210296  210298  210304  210308  210314  210322  266669 

科目: 來源: 題型:

已知α、β、γ是三個(gè)平面,且α∩β=a,α∩γ=b,β∩γ=c,且a∩b=O,求證:a、b、c三線共點(diǎn).

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3
)+1
(1)若函數(shù)y=f(x)的圖象關(guān)于直線x=t(t>0)對(duì)稱,求t的最小值;
(2)若存在x0∈[-
π
12
,
π
6
],使得mf(x0)-2=0成立,求實(shí)數(shù)m的取值范圍;
(3)若存在區(qū)間[a,b](a,b∈R且a<b),使得y=f(x)在[a,b]上至少含有6個(gè)零點(diǎn),在滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目: 來源: 題型:

橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別為F1(-
3
,0)和F2
3
,0),且橢圓過點(diǎn)(1,-
3
2
).
(1)求橢圓方程;
(2)過點(diǎn)(-
6
5
,0)作不與y軸垂直的直線l交該橢圓于M,N兩點(diǎn),A為橢圓的左頂點(diǎn),求證:∠MAN=
π
2

查看答案和解析>>

科目: 來源: 題型:

已知向量
.
a
=(sin(x+
π
6
),1),
b
=(4,4cosx-
3

(I)若
a
b
,求sin(x+
3
)的值;
(II)設(shè)f(x)=
a
b
,若α∈[0,
π
2
],f(α-
π
6
)=2
3
,求cosα的值.

查看答案和解析>>

科目: 來源: 題型:

對(duì)于集合Ω={θ1,θ2,…,θn}和常數(shù)θ0,定義:μ=
cos2(θ1-θ0)+cos2(θ2-θ0)+…+cos2(θn-θ0)
n
為集合Ω相對(duì)θ0的“余弦方差”.
(1)若集合Ω={
π
3
,
π
4
}
,θ0=0,求集合Ω相對(duì)θ0的“余弦方差”;
(2)若集合Ω={
π
3
3
,π}
,證明集合Ω相對(duì)于任何常數(shù)θ0的“余弦方差”是一個(gè)常數(shù),并求這個(gè)常數(shù);
(3)若集合Ω={
π
4
,α,β}
,α∈[0,π),β∈[π,2π),相對(duì)于任何常數(shù)θ0的“余弦方差”是一個(gè)常數(shù),求α,β的值.

查看答案和解析>>

科目: 來源: 題型:

隨機(jī)抽取某中學(xué)甲班10名同學(xué),他們的身高(單位:cm)數(shù)據(jù)是158,162,163,168,168,170,171,179,179,182;乙班10名同學(xué),他們的身高(單位:cm)數(shù)據(jù)是159,162,165,168,170,173,176,178,179,181.
(1)畫出甲、乙兩班的莖葉圖,并說明莖葉圖有什么優(yōu)點(diǎn)和缺點(diǎn)?
(2)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高(不必計(jì)算)

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=sin2x+cos(2x-
π
6
),x∈R.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a=1,b=
13
,B為銳角,且f(B)=
3
2
,求邊c的長(zhǎng).

查看答案和解析>>

科目: 來源: 題型:

過O極點(diǎn)引直線交圓ρ2+r2-2rρcosθ-a2=0(r>a>0)于P,Q兩點(diǎn),在此直線上取一點(diǎn)R,使得
2
OR
=
1
OP
+
1
OQ
,求R點(diǎn)的軌跡的極坐標(biāo)方程(r,a是常數(shù)).

查看答案和解析>>

科目: 來源: 題型:

已知an=2n+1,bn=
1
an
,Sn=b12+b22+b32+…+bn2,求證:Sn
1
4

查看答案和解析>>

科目: 來源: 題型:

某小學(xué)每天安排5節(jié)課,其中上午3節(jié)課,下午2節(jié)課.現(xiàn)要將音樂課、美術(shù)課各1節(jié)安排在星期三上.
(1)用樹狀圖或列舉法表示出所有可能的排課結(jié)果;
(2)求音樂課在上午而美術(shù)課恰好在下午的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案