相關(guān)習(xí)題
 0  210302  210310  210316  210320  210326  210328  210332  210338  210340  210346  210352  210356  210358  210362  210368  210370  210376  210380  210382  210386  210388  210392  210394  210396  210397  210398  210400  210401  210402  210404  210406  210410  210412  210416  210418  210422  210428  210430  210436  210440  210442  210446  210452  210458  210460  210466  210470  210472  210478  210482  210488  210496  266669 

科目: 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠BAC=90°,F(xiàn)為棱AA1上的動(dòng)點(diǎn),A1A=4,AB=AC=2.
(1)當(dāng)F為A1A的中點(diǎn),求直線BC與平面BFC1所成角的正弦值;
(2)當(dāng)
AF
FA1
的值為多少時(shí),二面角B-FC1-C的大小是45°.

查看答案和解析>>

科目: 來源: 題型:

已知離心率為
1
2
的橢圓C1的左、右焦點(diǎn)分別為F1,F(xiàn)2,拋物線C2:y2=4x的焦點(diǎn)為F2,
(Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)若過焦點(diǎn)F2的直線l與拋物線C2交于A,B兩點(diǎn),問在橢圓C1上且在直線l外是否存在一點(diǎn)M,使直線MA,MF2,MB的斜率依次成等差數(shù)列,若存在,請(qǐng)求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(Ⅰ)令ω=1,求函數(shù)F(x)=f(x)+f(x-
π
3
)的單調(diào)遞增區(qū)間;
(Ⅱ)令ω=2,將函數(shù)y=f(x)的圖象向左平移
π
6
個(gè)單位,再往上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象.若函數(shù)y=g(x)在區(qū)間[m,10π]上有20個(gè)零點(diǎn):a1,a2,a3,…,a20,求實(shí)數(shù)m的取值范圍并求a1+a2+a3+…+a19+a20的值.

查看答案和解析>>

科目: 來源: 題型:

一個(gè)口袋中裝有大小形狀完全相同的紅色球1個(gè)、黃色球2個(gè)、藍(lán)色球n(n∈N*)個(gè).現(xiàn)進(jìn)行從口袋中摸球的游戲:摸到紅球得1分、摸到黃球得2分、摸到藍(lán)球得3分.若從這個(gè)口袋中隨機(jī)地摸出2個(gè)球,恰有一個(gè)是黃色球的概率是
8
15

(1)求n的值;
(2)從口袋中隨機(jī)摸出2個(gè)球,設(shè)ξ表示所摸2球的得分之和,求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目: 來源: 題型:

△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,E為AC邊上的中點(diǎn)且2bcosB=ccosA+acosC.
(Ⅰ)求∠B的大小;
(Ⅱ)若△ABC的面積S≥
3
3
2
,求BE的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知點(diǎn)A(-1,0),B(1,0),P是平面上一動(dòng)點(diǎn),且滿足|
PB
|•|
AB
|=
PA
BA

(Ⅰ)設(shè)點(diǎn)P的軌跡為曲線C,求曲線C的方程;
(Ⅱ)M是曲線C上的動(dòng)點(diǎn),以線段MB為直徑作圓,證明該圓與y軸相切;
(Ⅲ)已知點(diǎn)Q(m,2)在曲線C上,過點(diǎn)Q引曲線C的兩條動(dòng)弦QD和QE,且QD⊥QE.判斷:直線DE是否過定點(diǎn)?試證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,點(diǎn)M為PC的中點(diǎn).
(1)求證:PA∥平面BMD;
(2)若PD⊥平面ABCD,∠BCD=60°,∠ABD=30°,求證:AD⊥PB.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ex(ax+2)(e為自然對(duì)數(shù)的底數(shù),a∈R為常數(shù)).對(duì)于函數(shù)g(x),h(x),若存在常數(shù)k,b,對(duì)于任意x∈R,不等式g(x)≤kx+b≤h(x)都成立,則稱直線y=kx+b是函數(shù)g(x),h(x)的分界線.
(Ⅰ)若a=-1,求f(x)的極值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)設(shè)a=2,試探究函數(shù)g(x)=-x2+4x+2與函數(shù)f(x)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

查看答案和解析>>

科目: 來源: 題型:

如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD為菱形,AB=1,AA1=
6
2
,∠ABC=60°.證明:BD1⊥平面AB1C.

查看答案和解析>>

科目: 來源: 題型:

過橢圓C:
x2
25
+
y2
16
=1的右焦點(diǎn)F作直線交橢圓C于A、B兩點(diǎn),已知AB=8,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案