相關(guān)習(xí)題
 0  210347  210355  210361  210365  210371  210373  210377  210383  210385  210391  210397  210401  210403  210407  210413  210415  210421  210425  210427  210431  210433  210437  210439  210441  210442  210443  210445  210446  210447  210449  210451  210455  210457  210461  210463  210467  210473  210475  210481  210485  210487  210491  210497  210503  210505  210511  210515  210517  210523  210527  210533  210541  266669 

科目: 來源: 題型:

已知直線l經(jīng)過拋物線x2=4y的焦點(diǎn),且與拋物線交于A,B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn).
(Ⅰ)證明:∠AOB為鈍角.
(Ⅱ)若△AOB的面積為4,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

如圖,在△ABC中,AB=AC,過點(diǎn)A的直線與△ABC的外接圓交于點(diǎn)P,交BC的延長線于點(diǎn)D,
(Ⅰ)求證:∠ABP=∠D;
(Ⅱ)若AC=3,AP=2,求點(diǎn)D到△ABC的外接圓的切線長.

查看答案和解析>>

科目: 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,…,am是首項(xiàng)為2,公差為3的等差數(shù)列;am+1,am+2,…,a2m是首項(xiàng)為2,公比為2的等比數(shù)列(其中m≥3,m∈N*),并對任意的n∈N*,均有an+2m=an成立.
(1)當(dāng)m=14時,求a1000;
(2)若a52=128,試求m的值.
(3)求滿足條件an=128的所有n的值(用m表示).

查看答案和解析>>

科目: 來源: 題型:

如圖,在梯形ABCD中,AD⊥CD,AB∥CD,AD=CD=
1
2
AB=a,平面ACEF⊥平面ABCD,四邊形ACEF是矩形,AE=a,點(diǎn)M在線段EF上.
(1)求證:AM⊥BC;
(2)若
EM
=
1
3
EF
,求二面角B-AM-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知拋物線D的頂點(diǎn)是橢圓
x2
4
+
y2
3
=1的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合
(1)求拋物線D的方程;
(2)已知動直線l過點(diǎn)P(4,0),交拋物D于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O為PQPQ中點(diǎn),求證∠AQP=∠BQP.

查看答案和解析>>

科目: 來源: 題型:

設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,點(diǎn)P(an,Sn)在直線y=2x-2上
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=2(1-
1
an
),數(shù)列{bn}的前n項(xiàng)和為Tn,若Tn≥a2-2恒成立,求a的最大值.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,平面PAB⊥平面ABCD,
PA=PB=AB=2,M是AB的中點(diǎn).
(1)證明:PM⊥平面ABCD
(2)求直線PC與平面ABCD所成的角的正切值.

查看答案和解析>>

科目: 來源: 題型:

如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),D,E分別是VB,VC的中點(diǎn),VA⊥平面ABC.
(1)求異面直線DE與AB所成的角;
(2)證明:DE⊥平面VAC.
(3)若AB=
2
VA
,求二面角A-BC-D的大。

查看答案和解析>>

科目: 來源: 題型:

如圖,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
1
2
AP=2,D是AP的中點(diǎn),E,G分別為PC,CB的中點(diǎn),將三角形PCD沿CD折起,使得PD垂直平面ABCD.
(Ⅰ)若F是PD的中點(diǎn),求證:AP∥平面EFG;
(Ⅱ)當(dāng)二面角G-EF-D的大小為
π
4
時,求FG與平面PBC所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知a>0,f(x)=xln(x+a)(x>0),g(x)=
2f(x)+a
x
;
(Ⅰ)求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=2時,?x0∈90,+∞),使f(x0)=bx0-1成立,求實(shí)數(shù)b的取值范圍;
(Ⅲ)若關(guān)于x的不等式g(x)≤1+ln(3a+1)在(0,+∞)有解,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案