相關(guān)習(xí)題
 0  211855  211863  211869  211873  211879  211881  211885  211891  211893  211899  211905  211909  211911  211915  211921  211923  211929  211933  211935  211939  211941  211945  211947  211949  211950  211951  211953  211954  211955  211957  211959  211963  211965  211969  211971  211975  211981  211983  211989  211993  211995  211999  212005  212011  212013  212019  212023  212025  212031  212035  212041  212049  266669 

科目: 來源: 題型:

某校進(jìn)入高中數(shù)學(xué)競(jìng)賽復(fù)賽的學(xué)生中,高一年級(jí)有6人,高二年級(jí)有12人,高三年級(jí)有24人,現(xiàn)采用分層抽樣的方法從這些學(xué)生中抽取7人進(jìn)行采訪
(Ⅰ)求應(yīng)從各年級(jí)分別抽取的人數(shù):
(Ⅱ)若從抽取的7人中再隨機(jī)抽取2人做進(jìn)一步了解
(i)列出所有可能的抽取結(jié)果;
(ii)求抽取的2人均為高三年級(jí)學(xué)生的概率.

查看答案和解析>>

科目: 來源: 題型:

若函數(shù)y=bsin2x+a(b<0)的最大值是4,最小值是-2,求a,b的值.

查看答案和解析>>

科目: 來源: 題型:

已知奇函數(shù)f(x)定義域?yàn)椋?1,1),且為增函數(shù),若f(a)<f(1-a),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知λ∈R,函數(shù)f(x)=lnx-
λ(x-1)
x+λ-1
,其中x∈[1,+∞).
(Ⅰ)當(dāng)λ=2時(shí),求f(x)的最小值;
(Ⅱ)在函數(shù)y=lnx的圖象上取點(diǎn)Pn(n,lnn)(n∈N*),記線段PnPn+1的斜率為kn,Sn=
1
k1
+
1
k2
+…+
1
kn
.對(duì)任意正整數(shù)n,試證明:
(。㏒n
n(n+2)
2
;           
(ⅱ)Sn
n(3n+5)
6

查看答案和解析>>

科目: 來源: 題型:

已知tanα=3,π<α<
2
,
(1)求cosα的值     
(2)求sin(
π
2
+α)+sin(π+α)的值.

查看答案和解析>>

科目: 來源: 題型:

求證:sinx(1+tanxtan
x
2
)=tanx.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=
|x+1|+|x+2|-a

(Ⅰ)若a=5,求函數(shù)f(x)的定義域A;
(Ⅱ)設(shè)B={x|-1<x<2},當(dāng)實(shí)數(shù)a,b∈B∩(∁RA)時(shí),求證:
|a+b|
2
<|1+
ab
4
|.

查看答案和解析>>

科目: 來源: 題型:

小明家訂了一份報(bào)紙,寒假期間他收集了每天報(bào)紙送達(dá)時(shí)間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.
(Ⅰ)根據(jù)圖中的數(shù)據(jù)信息,求出眾數(shù)x1和中位數(shù)x2(精確到整數(shù)分鐘);
(Ⅱ)小明的父親上班離家的時(shí)間y在上午7:00至7:30之間,而送報(bào)人每天在x1時(shí)刻前后半小時(shí)內(nèi)把報(bào)紙送達(dá)(每個(gè)時(shí)間點(diǎn)送達(dá)的可能性相等),求小明的父親在上班離家前能收到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目: 來源: 題型:

電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖;將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表.
非體育迷 體育迷 合計(jì)
合計(jì)
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),有多大的把握認(rèn)為“體育迷”與性別有關(guān)?
(3)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
參考公式:x2=
n(ad-bc)2
(a+b)(b+c)(a+c)(b+d)
(其中n=a+b+c+d)
x2≤2.706 x2>2.706 x2>3.841 x2>6.635
是否有關(guān)聯(lián) 沒有關(guān)聯(lián) 90% 95% 99%

查看答案和解析>>

科目: 來源: 題型:

試探究一次函數(shù)y=mx+d(x∈R)的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案