相關(guān)習(xí)題
 0  212299  212307  212313  212317  212323  212325  212329  212335  212337  212343  212349  212353  212355  212359  212365  212367  212373  212377  212379  212383  212385  212389  212391  212393  212394  212395  212397  212398  212399  212401  212403  212407  212409  212413  212415  212419  212425  212427  212433  212437  212439  212443  212449  212455  212457  212463  212467  212469  212475  212479  212485  212493  266669 

科目: 來(lái)源: 題型:

現(xiàn)有4位教師,每位教師帶了2位自己的學(xué)生參加數(shù)學(xué)競(jìng)賽.8名學(xué)生完成考試后由這4位教師進(jìn)行交叉閱卷,每位教師閱卷2份,每位教師均不能閱自己的學(xué)生試題,且不能閱來(lái)自同一位教師的2位同學(xué)的試題.問(wèn)閱卷方式有多少種不同的選擇?

查看答案和解析>>

科目: 來(lái)源: 題型:

已知f(x)=(x+a)ex
(1)若y=f(x)在x=0處的切線與直線x-2y-2014=0垂直,求y=f(x)的極值;
(2)設(shè)g(x)=x2-4x-3,若對(duì)任意的x∈[0,1],都存在s,t∈[-1,3]使得g(s)≤f(x)≤g(t)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知圓C的圓心C(3,1),被x軸截得的弦長(zhǎng)為4
2

(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A,B兩點(diǎn),且CA⊥CB,求a的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足a1=5,an+1=
8an-12
3an-4
,n∈N*,bn=
1
an-2

(Ⅰ)求證:數(shù)列{bn}為等差數(shù)列,并求其通項(xiàng)公式;
(Ⅱ)已知以數(shù)列{bn}的公差為周期的函數(shù)f(x)=Asin(ωx+φ)[A>0,ω>0,φ∈(0,π)]在區(qū)間[0,
1
2
]上單調(diào)遞減,求φ的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

求使函數(shù)y=1-
1
2
cos
π
3
x
(x∈R)取得最大值、最小值的自變量x的集合,并分別寫(xiě)出最大值、最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,S4=2S2+4.
(Ⅰ)求公差d的值;
(Ⅱ)若對(duì)任意的n∈N*,都有Sn≥S8成立,求a1的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

從一塊半徑為R的半圓形鋼板上截取一塊矩形鋼板,求矩形鋼板面積的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知圓的方程為x2+y2=r2,圓內(nèi)有一定點(diǎn)P(a,b),A,B是圓周上的兩個(gè)動(dòng)點(diǎn),PA⊥PB,求矩形APBQ的頂點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知各項(xiàng)為正數(shù)的數(shù)列{an}中,a1=1,對(duì)任意的k∈N*,a2k-1,a2k,a2k+1成等比數(shù)列,公比為qk;a2k,a2k+1,a2k+2成等差數(shù)列,公差為dk,且d1=2.
(1)求a2的值;
(2)設(shè)bk=
1
qk-1
,證明:數(shù)列{bk}為等差數(shù)列;
(3)求數(shù)列{dk}的前k項(xiàng)和Dk

查看答案和解析>>

科目: 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=-an-(
1
2
)n-1
+2(n∈N*),數(shù)列{bn}滿(mǎn)足bn=2nan
(1)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
n+1
n
an}的前n項(xiàng)和為T(mén)n,證明:n∈N*且n≥3時(shí),Tn
5n
2n+1
;
(3)設(shè)數(shù)列{cn}滿(mǎn)足an(cn-3n)=(-1)n-1λn(λ為非零常數(shù),n∈N*),問(wèn)是否存在整數(shù)λ,使得對(duì)任意n∈N*,都有cn+1>cn

查看答案和解析>>

同步練習(xí)冊(cè)答案