相關習題
 0  212694  212702  212708  212712  212718  212720  212724  212730  212732  212738  212744  212748  212750  212754  212760  212762  212768  212772  212774  212778  212780  212784  212786  212788  212789  212790  212792  212793  212794  212796  212798  212802  212804  212808  212810  212814  212820  212822  212828  212832  212834  212838  212844  212850  212852  212858  212862  212864  212870  212874  212880  212888  266669 

科目: 來源: 題型:

已知實數(shù)x,y滿足不等式
y≥0
x-y≥0
2x-y-2≥0
,試求:
(1)w1=x2+y2的最小值;     
(2)w2=
y-1
x+1
的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),左、右兩個焦點分別為F1、F2,上頂點M(0,b),△MF1F2為正三角形且周長為6,直線l:x=my+4與橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
OA
OB
的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C的中心在坐標原點O,左頂點A(-2,0),離心率e=
1
2
,F(xiàn)為右焦點,過焦點F的直線交橢圓C于P、Q兩點(不同于點A).
(Ⅰ)求橢圓C的方程;
(Ⅱ)當△APQ的面積S=
18
2
7
時,求直線PQ的方程;
(Ⅲ)求
OP
FP
的范圍.

查看答案和解析>>

科目: 來源: 題型:

已知拋物線x=
1
4
y2的焦點與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點重合,F(xiàn)1、F2是橢圓C的左、右焦點,Q是橢圓C上任意一點,且
QF1
QF2
的最大值是3.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0),使得PM、PN為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

一個口袋中裝有大小形狀完全相同的n+3個乒乓球,其中1個乒乓球上標有數(shù)字1,2個乒乓球上標有數(shù)字2,其余n個乒乓球上均標有數(shù)字3(n∈N*),若從這個口袋中隨機地摸出2個乒乓球,恰有一個乒乓球上標有數(shù)字2的概率是
8
15

(1)求n的值;
(2)從口袋中隨機地摸出2個乒乓球,設ξ表示所摸到的2個乒乓球上所標數(shù)字之積,求ξ的分布列和數(shù)學期望Eξ

查看答案和解析>>

科目: 來源: 題型:

設數(shù)列{an}的前n項和Sn滿足
Sn
n
=3n-2

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項和,求使得Tn
m
20
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=alnx,g(x)=x2.其中x∈R.
(Ⅰ)若曲線y=f(x)與y=g(x)在x=1處的切線相互平行,求兩平行直線間的距離;
(Ⅱ)若f(x)≤g(x)-1對任意x>0恒成立,求實數(shù)a的值;
(Ⅲ)當a<0時,對于函數(shù)h(x)=f(x)-g(x)+1,記在h(x)圖象上任取兩點A、B連線的斜率為kAB,若|kAB|≥1,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

設f(x)是定義在R上的奇函數(shù),且f(x+2)=-f(x),又當-1≤x≤1時,f(x)=x3,
(1)證明:直線x=1是函數(shù)f(x)圖象的一條對稱軸;
(2)當x∈[1,5]時,求f(x)的解析式;
(3)求x∈R時的函數(shù)f(x)的解析式;
(4)若A={x||f(x)|>a,x∈R},A≠∅,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,四邊形ABCD內接于圓O,∠BAD=60°,∠ABC=90°,BC=3,CD=5.求對角線BD、AC的長.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的點P到左右兩焦點F1,F(xiàn)2的距離之和為2
2
,離心率為
2
2

(Ⅰ)求橢圓的方程;
(Ⅱ)過右焦點F2的直線l交橢圓于A、B兩點,若y軸上一點M(0,
3
7
)
滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

同步練習冊答案