相關(guān)習(xí)題
 0  212854  212862  212868  212872  212878  212880  212884  212890  212892  212898  212904  212908  212910  212914  212920  212922  212928  212932  212934  212938  212940  212944  212946  212948  212949  212950  212952  212953  212954  212956  212958  212962  212964  212968  212970  212974  212980  212982  212988  212992  212994  212998  213004  213010  213012  213018  213022  213024  213030  213034  213040  213048  266669 

科目: 來源: 題型:

已知向量
p
=(cosα-5,-sinα),
q
=(sinα-5,cosα),
p
q
,且α∈(0,π).
(1)求tan2α的值;
(2)求2sin2(
α
2
+
π
6
)-sin(α+
π
6
)

查看答案和解析>>

科目: 來源: 題型:

定點(diǎn)A(-1,-
3
)在定圓x2+y2=4上,且A對于動(dòng)弦BC的張角為30°,求△ABC面積最大值與此時(shí)B,C的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

已知三棱柱ABC-A1B1C1的底面為直角三角形,則棱與底面垂直,如圖所示,D是棱CC1的中點(diǎn),且∠ACB=90°,BC=1,AC=
3
,AA1=
6

(Ⅰ)證明:A1D⊥平面AB1C1;
(Ⅱ)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓:
y2
a2
+
x2
b2
=1(a>b>0)
,離心率為
2
2
,焦點(diǎn)F1(0,-c),F(xiàn)2(0,c)過F1的直線交橢圓于M,N兩點(diǎn),且△F2MN的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線l與y軸交于點(diǎn)P(0,m)(m≠0),與橢圓C交于相異兩點(diǎn)A,B且
AP
PB
.若
OA
OB
=4
OP
,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知ABCD-A1B1C1D1是棱長為3的正方體,點(diǎn)E在AA1上,點(diǎn)F在CC1上,且AE=F1C=1.
(Ⅰ)求證:E、B、F、D1四點(diǎn)共面;
(Ⅱ)若點(diǎn)G在BC上,BG=
2
3
,點(diǎn)M在BB1上,GM⊥BF,垂足為H,求證:EM⊥面BCC1B1;
(Ⅲ)用θ表示截面EBFD1和面BCC1B1所成銳二面角大小,求cosθ.

查看答案和解析>>

科目: 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,PA=AB=
6
,點(diǎn)E是棱PB的中點(diǎn).
(Ⅰ)求證:直線AD∥平面PBC;
(Ⅱ) 求直線AD與平面PBC的距離;
(Ⅲ)若AD=3,求二面角A-EC-D的平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

如圖,在矩形ABCD中,點(diǎn)E為邊AD上的點(diǎn),點(diǎn)F為邊CD的中點(diǎn),AB=AE=
2
3
AD
,現(xiàn)將△ABE沿BE邊折至△PBE位置,且平面PBE⊥平面BCDE.
(Ⅰ) 求證:平面PBE⊥平面PEF;
(Ⅱ) 求二面角E-PF-C的大。

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,E為AD上一點(diǎn),PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE,F(xiàn)為PC上一點(diǎn),且CF=2FP.
(Ⅰ) 求證:PA∥平面BEF;
(Ⅱ)若PE=
3
AE
,求二面角F-BE-C的大小.

查看答案和解析>>

科目: 來源: 題型:

(理科)已知如圖,四邊形ABCD是矩形,PA⊥面ABCD,其中AB=3,PA=4.若在PD上存在一點(diǎn)E,使得BE⊥CE.
(Ⅰ)求線段AD長度的取值范圍;
(Ⅱ)若滿足條件的E點(diǎn)有且只有一個(gè),求二面角E-BC-A的正切值.

查看答案和解析>>

科目: 來源: 題型:

三角形ABC中,AB=4
3
,AC=2
3
,AD是BC上的中線,角BAD=30°,求BC的長.

查看答案和解析>>

同步練習(xí)冊答案