相關(guān)習(xí)題
 0  213614  213622  213628  213632  213638  213640  213644  213650  213652  213658  213664  213668  213670  213674  213680  213682  213688  213692  213694  213698  213700  213704  213706  213708  213709  213710  213712  213713  213714  213716  213718  213722  213724  213728  213730  213734  213740  213742  213748  213752  213754  213758  213764  213770  213772  213778  213782  213784  213790  213794  213800  213808  266669 

科目: 來(lái)源: 題型:

lim
x→1
x+a
3x
-1
=b,則a+b
=( 。
A、-2B、0C、2D、4

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)f(x)是定義域?yàn)镽的奇函數(shù),且在(0,+∞)上是減函數(shù),若f(1)=0,則不等式f(x)>0的解集是( 。
A、(-∞,-1)∪(1,+∞)
B、(-1,0)∪(0,1)
C、(-∞,-1)∪(0,1)
D、(-1,0)∪(1,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:

已知A是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)上的一個(gè)動(dòng)點(diǎn),弦AB.AC所在的直線分別過焦點(diǎn)F1、F2,且當(dāng)AB⊥AC時(shí),恰好有|
AF1
|=2|
AF2
|
2|
AF1
|=|
AF2
|

(1)求雙曲線C的離心率
(2)設(shè)
AF1
=λ1
F1B
,
AF2
=λ2
F2C
,試判斷λ12是否為定值?若是,求出該定值,若不是,則求出λ12的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

lim
n→∞
(
1-a
a
)n
存在,則實(shí)數(shù)a的取值范圍是(  )
A、(-
1
2
,
1
2
)
B、[
1
2
,+∞)
C、(-∞,1)
D、(
1
2
,1)

查看答案和解析>>

科目: 來(lái)源: 題型:

過點(diǎn)A(1,1)與曲線C:y=x3相切的直線方程是
 

查看答案和解析>>

科目: 來(lái)源: 題型:

在極坐標(biāo)系中,圓錐曲線ρ=
2
2-cosθ
的左準(zhǔn)線的極坐標(biāo)方程為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

函數(shù)f(x)=
x2-x-2
的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目: 來(lái)源: 題型:

我們常用定義解決與圓錐曲線有關(guān)的問題.如“設(shè)橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過左焦點(diǎn)F1作傾斜角為θ的弦AB,設(shè)|F1A|=r1,|F1B|=r2,試證
1
r1
+
1
r2
為定值”.
證明如下:不妨設(shè)A在x軸的上方,在△ABC中,由橢圓的定義及余弦定理得,(2a-r12=r12+4c2-4cr1cosθ,∴r1=
b2
a-ccosθ
,
同理r2=
b2
a-ccos(π-θ)
=
b2
a+ccosθ
,于是
1
r
1
+
1
r
2
=
2a
b2
.請(qǐng)用類似的方法探索:設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過左焦點(diǎn)F1作傾斜角為θ的直線與雙曲線右支交于點(diǎn)A,左支交于點(diǎn)B,設(shè)|F1A|=r1,|F1B|=r2,是否有類似的結(jié)論成立,請(qǐng)寫出與定值有關(guān)的結(jié)論是
 
..

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)S1={
ab
cd
|a,b,c,d∈R, b=c}
,S2={
ab
cd
|a,b,c,d∈R, a=d=b+c=0}
.已知矩陣
24
68
=A+B
,其中A∈S1,B∈S2.那么B=
 

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=x|x-2m|,常數(shù)m∈R.
(1)設(shè)m=0.求證:函數(shù)f(x)遞增;
(2)設(shè)m>0.若函數(shù)f(x)在區(qū)間[0,1]上的最大值為m2,求正實(shí)數(shù)m的取值范圍;
(3)設(shè)-2<m<0.記f1(x)=f(x),fk+1(x)=fk(f(x)),k∈N*.設(shè)n是正整數(shù),求關(guān)于x的方程fn(x)=0的解的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案