相關(guān)習題
 0  229749  229757  229763  229767  229773  229775  229779  229785  229787  229793  229799  229803  229805  229809  229815  229817  229823  229827  229829  229833  229835  229839  229841  229843  229844  229845  229847  229848  229849  229851  229853  229857  229859  229863  229865  229869  229875  229877  229883  229887  229889  229893  229899  229905  229907  229913  229917  229919  229925  229929  229935  229943  266669 

科目: 來源: 題型:選擇題

20.設i為虛數(shù)單位,復數(shù)z滿足z=$\frac{1+i}{i}$,則|z|=( 。
A.1B.$\frac{1}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

19.二次函數(shù)y=ax2+bx+c的圖象被x軸所截線段的長度為$\frac{\sqrt{^{2}-4ac}}{|a|}$,二次函數(shù)y=x2+kx+k,k∈[4,6]的圖象被x軸所截線一段長度的取值范圍是[0,2$\sqrt{3}$].

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{mx}{lnx}$,曲線y=f(x)在點x=e2處的切線與直線x-2y+e=0平行.
(Ⅰ)若函數(shù)g(x)=$\frac{1}{2}$f(x)-ax在(1,+∞)上是減函數(shù),求實數(shù)a的最小值;
(Ⅱ)若函數(shù)F(x)=f(x)-$\frac{{k{x^2}}}{x-1}$無零點,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左焦點F(-3,0),P為橢圓上一動點,橢圓內(nèi)部點M(-1,3)滿足PF+PM的最大值為17,則橢圓的離心率為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.過雙曲線$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1(a>0,b>0)的一個焦點F作兩漸近線的垂線,垂足分別為P、Q,若∠PFQ=$\frac{2}{3}$π,則雙曲線的漸近線方程為( 。
A.y=±$\frac{{\sqrt{3}}}{3}$xB.y=±$\sqrt{3}$xC.y=±xD.y=±$\frac{{\sqrt{3}}}{2}$x

查看答案和解析>>

科目: 來源: 題型:解答題

15.設命題p:關(guān)于x的函數(shù)y=(a-1)x為增函數(shù);命題q:不等式-x2+2x-2≤a對一切實數(shù)均成立.若命題“p或q”為真命題,且“p且q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

14.求證:cos$\frac{2π}{2n+1}$+cos$\frac{4π}{2n+1}$+…+cos$\frac{2nπ}{2n+1}$=-$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

13.設函數(shù)f(x)=1+cos2x+$\sqrt{3}$sin2x
(1)若函數(shù)f(x)=1-$\sqrt{3}$,且x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求x;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間,并在給出的坐標系中畫出y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目: 來源: 題型:填空題

12.設函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,則滿足不等式f(1)<f(lgx)的x取值范圍是$x>10或0<x<\frac{1}{10}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.拋物線x2=8y的焦點F的坐標是( 。
A.(0,2)B.(2,0)C.(0,-2)D.(-2,0)

查看答案和解析>>

同步練習冊答案