相關(guān)習題
 0  229779  229787  229793  229797  229803  229805  229809  229815  229817  229823  229829  229833  229835  229839  229845  229847  229853  229857  229859  229863  229865  229869  229871  229873  229874  229875  229877  229878  229879  229881  229883  229887  229889  229893  229895  229899  229905  229907  229913  229917  229919  229923  229929  229935  229937  229943  229947  229949  229955  229959  229965  229973  266669 

科目: 來源: 題型:解答題

10.求函數(shù)y=x+$\frac{1}{2(x-1)^{2}}$(x>1)的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.若f(x+2)=$\left\{\begin{array}{l}{tanx,x≥0}\\{lo{g}_{2}(-x),x<0}\end{array}\right.$,則f($\frac{π}{4}$+2)•f(-2)=( 。
A.-1B.1C.2D.-2

查看答案和解析>>

科目: 來源: 題型:填空題

8.在一半徑為4的半圓形鐵板中,截取一塊面積最大的矩形,則其面積是16.

查看答案和解析>>

科目: 來源: 題型:解答題

7.己知函數(shù)f(x)=ax+b,當x∈[a1,b1]時,值域為[a2,b2];當x∈[a2,b2]時,值域為[a3,b3],…,當x∈[a n-1,b n-1]時,值域為[an,bn],其中a,b為常數(shù),a1=0,b1=1.
(1)若a=1,求數(shù)列{an}、{bn}的通項公式;
(2)若a>0且a≠1,要使數(shù)列{bn}是公比不為1的等比數(shù)列,求b的值;
(3)若a>0,設(shè)數(shù)列{an}和{bn}的前n項和分別為Sn和Tn,求Tn-Sn的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為非零向量,則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$( 。
A.是三個向量的數(shù)量積B.是與$\overrightarrow{a}$共線的向量
C.是與$\overrightarrow{c}$共線的向量D.無意義

查看答案和解析>>

科目: 來源: 題型:選擇題

5.若兩個等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn對任意的n∈N*,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-1}{4n-3}$,則$\frac{{a}_{4}}{_{2}+_{6}}$的值是(  )
A.$\frac{23}{50}$B.$\frac{25}{49}$C.$\frac{13}{50}$D.$\frac{13}{25}$

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=Asin($\frac{x}{3}$-φ)(A>0,0<φ<$\frac{π}{2}$)的最大值為2,其圖象經(jīng)過點M(π,1)
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知正實數(shù)a,b滿足:a+b=1,則$\frac{3a}{{a}^{2}+b}$+$\frac{2b}{a+^{2}}$的最大值是(  )
A.3B.$\frac{10}{3}$C.$\sqrt{10}$D.$\frac{2\sqrt{7}+5}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知圓C的圓心C(1,2),且圓C與x軸相切,過原點O的直線與圓C相交于P、Q兩點,則$\overrightarrow{OP}$$•\overrightarrow{OQ}$的值是1.

查看答案和解析>>

科目: 來源: 題型:填空題

1.若0<x<1,則$\sqrt{(x-\frac{1}{x})^{2}+4}$-$\sqrt{(x+\frac{1}{x})^{2}-4}$等于2x.

查看答案和解析>>

同步練習冊答案