相關(guān)習(xí)題
 0  230076  230084  230090  230094  230100  230102  230106  230112  230114  230120  230126  230130  230132  230136  230142  230144  230150  230154  230156  230160  230162  230166  230168  230170  230171  230172  230174  230175  230176  230178  230180  230184  230186  230190  230192  230196  230202  230204  230210  230214  230216  230220  230226  230232  230234  230240  230244  230246  230252  230256  230262  230270  266669 

科目: 來源: 題型:選擇題

13.已知命題p為真命題,命題q為假命題,則下列命題為真命題的是(  )
A.¬pB.p∧qC.¬p∨qD.p∨q

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=1+$\sqrt{2}sin(x-\frac{π}{4})$.
(1)求函數(shù)的最大值和單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)=1+$\sqrt{2}sin(x-\frac{π}{4})$的圖象可以由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知f(x)=$\left\{\begin{array}{l}sinπx(x<0)\\ f(x-1)-1(x>0)\end{array}$,
(1)求$f(-\frac{1}{4})$的值;  
(2)求$f(\frac{5}{6})$的值.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知角θ的終邊過點P(1,-2),則sinθ=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知f1(x)=cosx,f2(x)=f1′(x),f3(x)=f2′(x),f4(x)=f3′(x),…,fn(x)=fn-1′(x),則f2016(x)等于( 。
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目: 來源: 題型:解答題

8.設(shè)⊙C與直線-x+$\sqrt{3}$y=4相切于點A(-1,$\sqrt{3}$),且經(jīng)過B(2,0).
(1)求⊙C的方程;
(2)令D(0,4),經(jīng)過點D的直線L與⊙C相交于M,N,點P在L上且滿足$\overrightarrow{MD}$=λ$\overrightarrow{DN}$,$\overrightarrow{MP}$=-λ$\overrightarrow{PN}$,求|$\overrightarrow{PD}$|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)$f(x)=2sin(2x+\frac{π}{3})$.
(1)求f(x)的最小正周期;
(2)求f(x)的最小值及取最小值時相應(yīng)的x值;
(3)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點A(0,-1),且離心率為$\frac{\sqrt{2}}{2}$.
(1)求a的值;
(2)經(jīng)過點(1,1),且斜率為k的直線與橢圓E交于不同的兩點P,Q(均異于點A),證明:直線AP與AQ的斜率之和為2.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(2cosx,sinx),$\overrightarrow$=(cosx,cosx+sinx).設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$
(1)求f(x)的解析式;
(2)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.(1)已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是夾角為60°的兩個單位向量,$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,求$\overrightarrow{a}$•$\overrightarrow$;
(2)已知$\overrightarrow a=(3,4),\overrightarrow b=(2,-1),求$$\overrightarrow{a}$•$\overrightarrow$,$\overrightarrow a在\overrightarrow b方向上的投影$.

查看答案和解析>>

同步練習(xí)冊答案