相關習題
 0  230256  230264  230270  230274  230280  230282  230286  230292  230294  230300  230306  230310  230312  230316  230322  230324  230330  230334  230336  230340  230342  230346  230348  230350  230351  230352  230354  230355  230356  230358  230360  230364  230366  230370  230372  230376  230382  230384  230390  230394  230396  230400  230406  230412  230414  230420  230424  230426  230432  230436  230442  230450  266669 

科目: 來源: 題型:解答題

16.已知(2$\sqrt{x}$+$\frac{1}{\root{4}{x}}$)n(n∈N*)的展開式中,所有偶數(shù)項的二項式系數(shù)的和是128.
(1)求n的值;
(2)求展開式中的有理項.

查看答案和解析>>

科目: 來源: 題型:解答題

15.為了解“網(wǎng)絡游戲?qū)Ξ敶嗌倌甑挠绊憽弊隽艘淮握{(diào)查,共調(diào)查了26名男同學、24名女孩同學.調(diào)查的男生中有8人不喜歡玩電腦游戲,其余男生喜歡玩電腦游戲;而調(diào)查的女生中有9人喜歡玩電腦游戲,其余女生不喜歡電腦游戲.
(1)根據(jù)以上數(shù)據(jù)填寫如下2×2的列聯(lián)表:
性別
對游戲態(tài)度
男生女生合計
喜歡玩電腦游戲18927
不喜歡玩電腦游戲81523
合計262450
(2)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.025的前提下認為“喜歡玩電腦游戲與性別關系”?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.050.0250.010
k03.8415.0246.635

查看答案和解析>>

科目: 來源: 題型:填空題

14.對(1+x)n=1+C${\;}_{n}^{1}$x+C${\;}_{n}^{2}$x2+C${\;}_{n}^{3}$x3+…+C${\;}_{n}^{n}$xn兩邊求導,可得n(1+x)n-1=C${\;}_{n}^{1}$+2C${\;}_{n}^{2}$x+3C${\;}_{n}^{3}$x2+…+nC${\;}_{n}^{n}$xn-1.通過類比推理,有(3x-2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,可得a1+2a2+3a3+4a4+5a5+6a6=18.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知i為虛數(shù)單位,實數(shù)a與純虛數(shù)z滿足(2-i)z=4-ai,則a的值為-8.

查看答案和解析>>

科目: 來源: 題型:填空題

12.某汽車廠為某種型號汽車的外殼設計了4種不同的式樣和2種不同的顏色,那么該型號汽車共有8種不同的外殼.(用數(shù)字作答)

查看答案和解析>>

科目: 來源: 題型:選擇題

11.從1~9這9個正整數(shù)中任取2個不同的數(shù),事件A為“取到的2個數(shù)之和為偶數(shù)”,事件B為“取到的2個數(shù)均為偶數(shù)”,則P(B|A)=( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知兩個變量有比較好的線性相關關系,可以用回歸直線來近似刻畫它們之間的關系,關于回歸直線的方程,有下述結(jié)論:
①回歸方程只適用于我們所研究的樣本的總體;
②建立的回歸方程一般都有時間性;
③樣本取值的范圍會影響回歸方程的適用范圍.
其中正確結(jié)論的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

9.10×9×8×…×4可表示為(  )
A.A${\;}_{10}^{6}$B.A${\;}_{10}^{7}$C.C${\;}_{10}^{6}$D.C${\;}_{10}^{7}$

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知i為虛數(shù)單位,則($\frac{1+i}{1-i}$)2=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=2a•sinωxcosωx+2$\sqrt{3}$cos2ωx-$\sqrt{3}$+1(a>0,ω>0)的最大值為3,最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(Ⅱ)若f(θ)=$\frac{7}{3}$,求sin(4θ+$\frac{π}{6}$)的值.
(Ⅲ)若存在區(qū)間[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6個零點,在滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

同步練習冊答案