相關(guān)習題
 0  230749  230757  230763  230767  230773  230775  230779  230785  230787  230793  230799  230803  230805  230809  230815  230817  230823  230827  230829  230833  230835  230839  230841  230843  230844  230845  230847  230848  230849  230851  230853  230857  230859  230863  230865  230869  230875  230877  230883  230887  230889  230893  230899  230905  230907  230913  230917  230919  230925  230929  230935  230943  266669 

科目: 來源: 題型:選擇題

13.滿足條件a=4,b=5$\sqrt{2}$,A=45°的△ABC的個數(shù)是( 。
A.1B.2C.無數(shù)個D.不存在

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線被圓x2+y2-6x+5=0截得的弦長為2,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{2}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知函數(shù)f(x)是R上的奇函數(shù),且當x<0時,f(x)=x3+x+1,則當x>0時,f(x)=x3+x-1.

查看答案和解析>>

科目: 來源: 題型:填空題

10.($\frac{1}{x}$-x29展開式中的常數(shù)項為-84.

查看答案和解析>>

科目: 來源: 題型:解答題

9.一個空間幾何體的三視圖及部分數(shù)據(jù)如圖(1)所示,直觀圖如圖(2)所示.
(1)求它的體積;
(2)證明:A1C⊥平面AB1C1;
(3)若D是棱CC1的中點,在棱AB上取中點E,判斷DE是否平行于平面AB1C1,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:解答題

8.設(shè)a,b∈R,函數(shù)f(x)=ax+$\frac{1}{x}$.g(x)=x2+b,
(1)若a=-3,b=0,求函數(shù)h(x)=f(x)•g(x)在區(qū)間(0,1]上的最值;
(2)若函數(shù)m(x)=f(x)+g(x)在區(qū)間(0,1]上單調(diào)遞減,求實數(shù)a的最大值;
(3)若對任意實數(shù)a∈(-∞,-1),關(guān)于x的方程f(x)=g(x)有三個不同的解,求實數(shù)b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.用反證法證明“凸四邊形的四個內(nèi)角中至少有一個不小于90°”時,首先要作出的假設(shè)是( 。
A.四個內(nèi)角都大于90°B.四個內(nèi)角中有一個大于90°
C.四個內(nèi)角都小于90°D.四個內(nèi)角中有一個小于90°

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=ln(2x+a)-4x2-2x在x=0處取得極值.
(1)求實數(shù)a的值,并討論f(x)的單調(diào)性;
(2)證明:對任意的正整數(shù)n,不等式2+$\frac{3}{4}$+$\frac{4}{9}$+…+$\frac{n+1}{{n}^{2}}$>ln(n+1)都成立.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知a為實數(shù),函數(shù)f(x)=(x2+1)(x+a)
(1)若函數(shù)f(x)在R上存在極值,求實數(shù)a的取值范圍;
(2)若f′(1)=0,求函數(shù)f(x)在區(qū)間[-1,$\frac{1}{2}$]上的最大值和最小值;
(3)若函數(shù)f(x)在區(qū)間[-1,$\frac{1}{2}$]上不具有單調(diào)性,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=log2$\frac{2+x}{2-x}$.
(1)判斷f(x)的奇偶性;
(2)利用函數(shù)單調(diào)性的定義證明f(x)為定義域上的單調(diào)增函數(shù);
(2)解關(guān)于x的不等式f(x2-2)+f(-x)<0.

查看答案和解析>>

同步練習冊答案