相關(guān)習(xí)題
 0  230862  230870  230876  230880  230886  230888  230892  230898  230900  230906  230912  230916  230918  230922  230928  230930  230936  230940  230942  230946  230948  230952  230954  230956  230957  230958  230960  230961  230962  230964  230966  230970  230972  230976  230978  230982  230988  230990  230996  231000  231002  231006  231012  231018  231020  231026  231030  231032  231038  231042  231048  231056  266669 

科目: 來源: 題型:選擇題

3.已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為$\frac{π}{2}$,則該函數(shù)的圖象( 。
A.關(guān)于直線x=$\frac{π}{4}$對稱B.關(guān)于點($\frac{3π}{16}$,0)對稱
C.關(guān)于直線x=$\frac{3π}{16}$對稱D.關(guān)于點($\frac{π}{16}$,0)對稱

查看答案和解析>>

科目: 來源: 題型:選擇題

2.若某校高一年級8個年級合唱比賽的得分如下:89、87、93、91、96、94、90、92,這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別為( 。
A.91.5和91.5B.91.5和92C.91和91.5D.92和92

查看答案和解析>>

科目: 來源: 題型:解答題

1.A,B,C,D,E五名大學(xué)生被隨機(jī)地分到甲、乙、丙、丁四所學(xué)校實習(xí),每所學(xué)校至少負(fù)責(zé)安排一名實習(xí)生.
(1)求A,B兩人同時去甲學(xué)校實習(xí)的概率;
(2)求A,B兩人不去同一所學(xué)校實習(xí)的概率;
(3)設(shè)隨機(jī)變量ξ為這五名學(xué)生中去甲學(xué)校實習(xí)的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

20.甲、乙兩支籃球隊賽季總決賽采用7場4勝制,每場必須分出勝負(fù),場與場之間互不影響,只要有一對獲勝4場就結(jié)束比賽.現(xiàn)已比賽了4場,且甲籃球隊勝3場,已知甲球隊第5,6場獲勝的概率均為$\frac{3}{5}$,但由于體力原因,第7場獲勝的概率為$\frac{2}{5}$.
(1)求甲對以4:3獲勝的概率;
(2)設(shè)X表示決出冠軍時比賽的場數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知函數(shù)f(x)的定義域是R,f(0)=2,若對任意{x∈R,f(x)+f′(x)<1},則不等式exf(x)<ex+1的解集為(0,+∞).

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知離散型隨機(jī)變量X服從二項分布X~B(n,p)且E(X)=12,D(X)=4,則n與p的值分別為(  )
A.$18,\frac{2}{3}$B.$18,\frac{1}{3}$C.$12,\frac{2}{3}$D.$12,\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,已知長方體ABCD-A1B1C1D1,底面是邊長為1的正方形,高AA1=2.
求:(1)異面直線BD與AB1所成角的余弦值;
(2)若P為C1D1上的任意一點,求四面體P-ABD的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知tan(α+β)=$\frac{3}{5}$,tan(β+$\frac{π}{4}$)=$\frac{1}{2}$,則tan(α-$\frac{π}{4}$)=$\frac{1}{13}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知an=$\frac{2}{{{n^2}+2n}}$,則S6=( 。
A.$\frac{69}{56}$B.$\frac{7}{8}$C.$\frac{69}{28}$D.$\frac{7}{16}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.如圖,測量河對岸的旗桿AB高時,選與旗桿底B在同一水平面內(nèi)的兩個測點C與D.測得∠BCD=75°,∠BDC=60°,CD=a,并在點C測得旗桿頂A的仰角為60°,則旗桿高AB為( 。
A.$\frac{{\sqrt{2}}}{2}a$B.$\frac{{3\sqrt{2}}}{2}a$C.$\frac{{\sqrt{3}}}{2}a$D.$\frac{{\sqrt{6}}}{2}a$

查看答案和解析>>

同步練習(xí)冊答案