相關(guān)習(xí)題
 0  230927  230935  230941  230945  230951  230953  230957  230963  230965  230971  230977  230981  230983  230987  230993  230995  231001  231005  231007  231011  231013  231017  231019  231021  231022  231023  231025  231026  231027  231029  231031  231035  231037  231041  231043  231047  231053  231055  231061  231065  231067  231071  231077  231083  231085  231091  231095  231097  231103  231107  231113  231121  266669 

科目: 來源: 題型:解答題

3.若函數(shù)y=x3+bx2+cx在區(qū)間(-∞,0)及[2,+∞)是增函數(shù),在(0,2)是減函數(shù),求此函數(shù)在[-1,4]上的值域.

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),若函數(shù)f(x)的圖象關(guān)于直線x=2對稱,且f(4)=1,則不等式f(x)<ex的解集為(0,+∞).

查看答案和解析>>

科目: 來源: 題型:選擇題

1.定義在(0,+∞)上的函數(shù)f(x)滿足xf′(x)-f(x)=x2lnx,且f(1)=-1,則f(x)的最小值為(  )
A.-eB.-$\frac{e}{2}$C.$\frac{e}{2}$D.e

查看答案和解析>>

科目: 來源: 題型:選擇題

20.定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(x)>0,且$\frac{2f(x)}{x}$<f′(x)$<\frac{3f(x)}{x}$(其中f′(x)是f(x)的導(dǎo)函數(shù))恒成立,則(  )
A.$\frac{1}{3}$$<\frac{f(2)}{f(4)}$$<\frac{1}{2}$B.$\frac{1}{4}<\frac{f(2)}{f(4)}$$<\frac{1}{3}$C.$\frac{1}{8}$$<\frac{f(2)}{f(4)}$$<\frac{1}{4}$D.$\frac{1}{16}$$<\frac{f(2)}{f(4)}$$<\frac{1}{8}$

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx+x2+x,正實(shí)數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明:x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=ex,g(x)=lnx+2.
(I)當(dāng)x>0時(shí),求證:f(x)>g(x);
(Ⅱ)當(dāng)x≥1時(shí),若不等式f(x)≥2ax-a≥g(x)-$\frac{3}{2}$恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明:PA∥平面EDB;
(2)求PD與平面EFD所成角的正切值.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知奇函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且當(dāng)x∈(0,+∞)時(shí),xf′(x)-f(x)=x,若f(e)=e,則f(x)>0的解集為(  )
A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(e,+∞)C.(-e,0)∪(e,+∞)D.(-∞,-e)∪(0,e)

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,四棱錐P-ABCD的底面是直角梯形.∠BAD=∠CDA=90°,直線PD⊥底面ABCD,AB=1,DC=2,AD=$\sqrt{3}$.點(diǎn)E是BC的中點(diǎn).
(1)求證:AE⊥平面PBD;(2)若PD=$\frac{3}{2}$,求直線PC與平面PAE所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=x3+mx2+nx+p在x=-$\frac{2}{3}$和x=1處都取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對任意的x∈[-2,2],有f(x)≥-p2-ap-6恒成立,其中a∈[-1,1].求p的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案