相關(guān)習(xí)題
 0  231054  231062  231068  231072  231078  231080  231084  231090  231092  231098  231104  231108  231110  231114  231120  231122  231128  231132  231134  231138  231140  231144  231146  231148  231149  231150  231152  231153  231154  231156  231158  231162  231164  231168  231170  231174  231180  231182  231188  231192  231194  231198  231204  231210  231212  231218  231222  231224  231230  231234  231240  231248  266669 

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=|2x+4|-|x-a|.
(1)當(dāng)a=1時(shí),解不等式f(x)≥10;
(2)當(dāng)a>0時(shí),f(x)≥a2-3恒成立,試求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖,四邊形BCDE為矩形,平面ABC⊥平面BCDE,AC⊥BC,AC=CD=$\frac{1}{2}$BC=2,F(xiàn)是AD的中點(diǎn).
(1)求證:AB∥平面CEF;
(2)求點(diǎn)A到平面CEF的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

17.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為:$\left\{\begin{array}{l}{x=\sqrt{3}cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù)),直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)=4.
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)若點(diǎn)P在曲線C上,點(diǎn)Q在直線l上,求線段PQ的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知變換T把平面上的點(diǎn)(3,-4),(5,0)分別變換成(2,-1),(-1,2),試求變換T對(duì)應(yīng)的矩陣M.

查看答案和解析>>

科目: 來源: 題型:解答題

15.(1)已知關(guān)于x的不等式3x-|-2x+1|≥a,其解集為[2,+∞),求實(shí)數(shù)a的值;
(2)若對(duì)?x∈[1,2],x-|x-a|≤1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx+ax2-1,且f′(1)=-1.
(1)求f(x)的解析式;
(2)證明:函數(shù)y=f(x)-xex+x2的圖象在直線y=-x-1的圖象下方.

查看答案和解析>>

科目: 來源: 題型:填空題

13.設(shè)P是曲線$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}secθ\\ y=tanθ\end{array}\right.$(θ為參數(shù))上的一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),M為線段OP的中點(diǎn),則點(diǎn)M的軌跡的普通方程為8x2-4y2=1.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.(2006年)已知tan2θ=3,則$\frac{2si{n}^{2}θ-1}{sinθ•cosθ}$的值為( 。
A.-$\frac{2}{3}$B.-$\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.函數(shù)f(x)=$\frac{sinx•cosx}{1+sinx+cosx}$的最大值為( 。
A.-$\sqrt{3}$-1B.$\frac{\sqrt{2}-1}{2}$C.$\frac{-\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ2-4ρcosθ+3=0,θ∈[0,2π].
(1)求C1的直角坐標(biāo)方程;
(2)曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t為參數(shù)),求C1與C2的公共點(diǎn)的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案