相關(guān)習(xí)題
 0  231061  231069  231075  231079  231085  231087  231091  231097  231099  231105  231111  231115  231117  231121  231127  231129  231135  231139  231141  231145  231147  231151  231153  231155  231156  231157  231159  231160  231161  231163  231165  231169  231171  231175  231177  231181  231187  231189  231195  231199  231201  231205  231211  231217  231219  231225  231229  231231  231237  231241  231247  231255  266669 

科目: 來(lái)源: 題型:選擇題

9.在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),則它到直線l的距離的最小值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.在路旁某處,有電線桿15根,某人沿路的一方每次運(yùn)一根放到路邊,然后沿原路返回,再運(yùn)第2根、第3根,…,直到全部運(yùn)完返回原地,如果他第一根是運(yùn)放到距原處50米處,以后的每一根比前一根要多運(yùn)40米,此人共走路多少米?

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=3ln2x-2x,它的兩個(gè)極值點(diǎn)為x1,x2(x1<x2),給出以下結(jié)論:
①1<x1<3<x2;②1<x1<x2<3;③f(x1)>-3;④f(x1)<-$\frac{5}{3}$
則上述結(jié)論中所有正確的序號(hào)是( 。
A.①③B.②③④C.①④D.①③④

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.在正方體ABCD-A1B1C1D1中,E是A1D1的中點(diǎn),則直線AE與直線CC1所成角的正切值是(  )
A.$\frac{1}{2}$B.2C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.若a≥0,b≥0,且a+b=2,則( 。
A.ab≤1B.ab≥1C.a2+b2≥4D.a2+b2≤2

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2$\sqrt{2}$,∠ABC=90°(如圖1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角為θ(如圖2),M、N分別是BD和BC中點(diǎn).
(1)若E為線段AN上任意一點(diǎn),求證:ME⊥BD;
(2)若θ=$\frac{π}{3}$,求AB與平面BCD所成角的正弦值.
(3)P、Q分別為線段AB與DN上一點(diǎn),使得$\frac{AP}{PB}$=$\frac{NQ}{QD}$=λ(λ∈R).令PQ與BD和AN所成的角分別為θ1和θ2.求sinθ1+sinθ2的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)外一點(diǎn)P(x0,y0),求證:方程($\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{^{2}}$-1)($\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$-1)=($\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$-1)2表示過(guò)點(diǎn)P的橢圓的兩條切線.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù).若f(x)的最小正周期是π,且當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)=cosx,則f($\frac{5π}{3}$)的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.如圖,三棱柱ABC-A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(Ⅰ)求證:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若AB=2,E為BC的中點(diǎn),求異面直線B1E與AC1所成角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.如圖所示,正方形ABCD所在的平面與三角形CDE所在的平面交于CD,且AE⊥平面CDE.
(1)求證:平面ABCD⊥平面ADE;
(2)已知AB=2AE=2,求三棱錐C-BDE的高h(yuǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案