相關(guān)習(xí)題
 0  231114  231122  231128  231132  231138  231140  231144  231150  231152  231158  231164  231168  231170  231174  231180  231182  231188  231192  231194  231198  231200  231204  231206  231208  231209  231210  231212  231213  231214  231216  231218  231222  231224  231228  231230  231234  231240  231242  231248  231252  231254  231258  231264  231270  231272  231278  231282  231284  231290  231294  231300  231308  266669 

科目: 來(lái)源: 題型:選擇題

19.以括號(hào)的形式給出正整數(shù)的排列形式如下:
(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),…據(jù)此規(guī)律,第100個(gè)括號(hào)里面的第1個(gè)數(shù)是(  )
A.4949B.4950C.4951D.4952

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

18.已知f(x)=|3x-2|,且方程f(x)-a=0恰好有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為(0,2).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.函數(shù)f(x)=2sin(πx)+$\frac{1}{1-x}$(x∈[-2,4])的所有零點(diǎn)之和為4.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.已知直線l經(jīng)過(guò)直線3x+4y-2=0與直線2x+y+2=0的交點(diǎn)P,且平行于直線x-3y-1=0,求直線l與兩坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x•|x|-2x
(Ⅰ)求函數(shù)f(x)=0時(shí)x的值;
(Ⅱ)畫出y=f(x)的圖象,并結(jié)合圖象寫出f(x)=m有三個(gè)不同實(shí)根時(shí),實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=-lnx+t(x-1),t為實(shí)數(shù).
(1)當(dāng)t=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)t=$\frac{1}{2}$時(shí),$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

13.已知函數(shù)y=loga(x-1)+3,(a>0且a≠1)的圖象恒過(guò)點(diǎn)P,則P的坐標(biāo)是(2,3),若角α的終邊經(jīng)過(guò)點(diǎn)P,則sin2α-sin2α的值等于$-\frac{3}{13}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=|x-2|-3,g(x)=|x+3|
(1)解不等式f(x)<g(x);
(2)若不等式f(x)<g(x)+a對(duì)任意x∈R恒成立,試求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.若函數(shù)f(x)的反函數(shù)記為f-1(x),已知函數(shù)f(x)=ex
(Ⅰ)設(shè)函數(shù)F(x)=f-1(x)-f(x),試判斷函數(shù)F(x)的極值點(diǎn)個(gè)數(shù);
(Ⅱ)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)•sinx≥kx,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系xOy中,將曲線C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù))上所有點(diǎn)橫坐標(biāo)變?yōu)樵瓉?lái)的2倍得到曲線C2,將曲線C1向上平移一個(gè)單位得到曲線C3,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C2的普通方程及曲線C3的極坐標(biāo)方程;
(Ⅱ)若點(diǎn)P是曲線C2上任意一點(diǎn),點(diǎn)Q是曲線C3上任意一點(diǎn),求|PQ|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案