相關(guān)習(xí)題
 0  231168  231176  231182  231186  231192  231194  231198  231204  231206  231212  231218  231222  231224  231228  231234  231236  231242  231246  231248  231252  231254  231258  231260  231262  231263  231264  231266  231267  231268  231270  231272  231276  231278  231282  231284  231288  231294  231296  231302  231306  231308  231312  231318  231324  231326  231332  231336  231338  231344  231348  231354  231362  266669 

科目: 來源: 題型:解答題

15.如圖所示,在三棱柱ABC-A1B1C1中,矩形ABB1A1的對角線相交于點(diǎn)G,且側(cè)面ABB1A1⊥平面ABC,AC=CB=BB1=2,F(xiàn)為CB1上的點(diǎn),且BF⊥平面AB1C.
(1)求證:AC⊥平面BB1C1C;
(2)求二面角A1-B1C-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.如圖,在圓錐PO中,已知PO=$\sqrt{2}$,⊙O的直徑AB=2,C是$\widehat{AB}$的中點(diǎn),則二面角B-PA-C的余弦值為( 。
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{15}}{5}$D.$\sqrt{15}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,平面PAD⊥底面ABCD,AB∥CD,PA=PD=AD=1,DC=2AB=4AD,∠ADC=120°,E為PC的中點(diǎn).
(1)求證:直線BE∥平面PAD;
(2)求二面角P-BD-E的大。

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知直三棱柱ABC-A1B1C1中,AB⊥AC,AB=3,AC=4,B1C⊥AC1
(1)求AA1的長.
(2)在線段BB1存在點(diǎn)P,使得二面角P-A1C-A大小的余弦值為$\frac{\sqrt{3}}{3}$,求$\frac{BP}{B{B}_{1}}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,側(cè)面PAD為等邊三角形且平面PAD⊥底面ABCD,E、F分別為CD、PB的中點(diǎn).
(1)求證:EF⊥PA;
(2)求二面角P-BE-A的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知三棱錐A-BCD的各棱長均為2,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.正三棱柱ABC-A1B1C1的所有棱長都相等,D,E分別是AB,BB1的中點(diǎn).
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,E是CD的中點(diǎn),D1E⊥BC.
(1)求證:四邊形BCC1B1是矩形;
(2)若AA1=$\sqrt{2}$,BC=DE=D1E=1,求平面BCC1B1與平面BED1所成銳二面角的大。

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,ABCD是直角梯形,AB∥CD,BC⊥CD,CF⊥平面ABCD,DE∥CF,AD⊥DB.
(1)求證:BD⊥AE.
(2)若DE=1,CB=CD=CF=2,求二面角E-BD-F的余弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

6.在三棱錐S-ABC中,△ABC為正三角形,且A在面SBC上的射影H是△SBC的垂心,又二面角H-AB-C為30°,則$\frac{SA}{AB}$=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案