相關(guān)習(xí)題
 0  231305  231313  231319  231323  231329  231331  231335  231341  231343  231349  231355  231359  231361  231365  231371  231373  231379  231383  231385  231389  231391  231395  231397  231399  231400  231401  231403  231404  231405  231407  231409  231413  231415  231419  231421  231425  231431  231433  231439  231443  231445  231449  231455  231461  231463  231469  231473  231475  231481  231485  231491  231499  266669 

科目: 來源: 題型:選擇題

14.已知函數(shù)f(x)=(x2-3)ex,則關(guān)于x的方程f2(x)-mf(x)-$\frac{12}{{e}^{2}}$=0的實(shí)根個(gè)數(shù)可能是( 。
A.3B.1C.3或5D.1或3或5

查看答案和解析>>

科目: 來源: 題型:填空題

13.如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的$\sqrt{2}$倍,P為側(cè)棱SD上的點(diǎn).
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大。

查看答案和解析>>

科目: 來源: 題型:解答題

12.國(guó)內(nèi)某大學(xué)有男生6000人,女生4000人,該校想了解本校學(xué)生的運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取100人,調(diào)查他們平均每天運(yùn)動(dòng)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)表明該校學(xué)生平均每天運(yùn)動(dòng)的時(shí)間范圍是[0,3],若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“運(yùn)動(dòng)達(dá)人”,低于2小時(shí)的學(xué)生為“非運(yùn)動(dòng)達(dá)人”,根據(jù)調(diào)查的數(shù)據(jù)按性別與“是否為‘運(yùn)動(dòng)達(dá)人’”進(jìn)行統(tǒng)計(jì),得到如表2×2列聯(lián)表.
運(yùn)動(dòng)時(shí)間
性別 
運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人合計(jì)
男生 36  
女生  26 
合計(jì)  100 
(1)請(qǐng)根據(jù)題目信息,將2×2類聯(lián)表中的數(shù)據(jù)補(bǔ)充完整,并通過計(jì)算判斷能否在犯錯(cuò)誤頻率不超過0.025的前提下認(rèn)為性別與“是否為‘運(yùn)動(dòng)達(dá)人’”有關(guān);
(2)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查該校的3名男生,設(shè)調(diào)查的3人中運(yùn)動(dòng)達(dá)人的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望E(X)及方差D(X).
附表及公式:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=lnx+$\frac{a}{x-1}$(a為常實(shí)數(shù))
(Ⅰ)若?x0∈[e,e2],(e為自然對(duì)數(shù)的底數(shù),且e≈2.71828…),使得f(x0)>0,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若實(shí)數(shù)a>0,函數(shù)f(x)在(0,$\frac{1}{e}$)內(nèi)有極值點(diǎn),當(dāng)x1∈(0,1),x2∈(1,+∞),求證:f(x2)-f(x1)>2e-$\frac{4}{3}$(e=2.71828…)

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)F(x)=-ax+lnx+1(a∈R).
(1)討論函數(shù)F(x)的單調(diào)性;
(2)定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式f(F(x))+f(ax-lnx-1)≥2f(1)對(duì)x∈[1,3]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.若函數(shù)f(x)=|x-1|+|x-2|+…+|x-99|+|x-100|,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

8.設(shè)a為實(shí)數(shù),若函數(shù)y=$\frac{3}{x}$圖象上存在三個(gè)不同的點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3),滿足x1+y2=x2+y3=x3+y1=a,則a的值為±$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=(a+1)x-lnx(a∈R).
(Ⅰ)若函數(shù)f(x)在點(diǎn)P(1,f(1))處的切線與直線y=2x+1垂直,求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)f(x)在x∈(0,e]上的最小值為3,求實(shí)數(shù)a的值;
(Ⅲ)當(dāng)x∈(0,e]時(shí),證明:e2x2-xlnx>lnx+$\frac{5}{2}$x.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知關(guān)于x的方程4x2+4(k+2)x+(2k2+2k+1)=0的兩實(shí)根為α,β,則(α+1)(β+1)的取值范圍是[-$\frac{7}{8}$,$\frac{9}{4}$].

查看答案和解析>>

科目: 來源: 題型:解答題

5.函數(shù)f(x)=|x-1|+|x-2|.
(1)求不等式f(x)<3的解集;
(2)不等式f(x)≤a(x+$\frac{1}{2}$)的解集非空,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案