相關(guān)習(xí)題
 0  231534  231542  231548  231552  231558  231560  231564  231570  231572  231578  231584  231588  231590  231594  231600  231602  231608  231612  231614  231618  231620  231624  231626  231628  231629  231630  231632  231633  231634  231636  231638  231642  231644  231648  231650  231654  231660  231662  231668  231672  231674  231678  231684  231690  231692  231698  231702  231704  231710  231714  231720  231728  266669 

科目: 來源: 題型:選擇題

16.若不等式|x-2|+|x+3|<a的解集為∅,則a的取值范圍為( 。
A.(2,+∞)B.[-3,+∞)C.(-∞,5]D.(-∞,-3)

查看答案和解析>>

科目: 來源: 題型:解答題

15.設(shè)數(shù)列{an}的各項都是正數(shù),且對于n∈N*,都有a${\;}_{1}^{3}$+a${\;}_{2}^{3}$+a${\;}_{3}^{3}$+…+a${\;}_{n}^{3}$=S${\;}_{n}^{2}$,其中Sn為數(shù)列{an}的前n項和.
(1)求a2;
(2)求數(shù)列{an}的通項公式;
(3)若bn=3n+(-1)n-1λ•${2^{a_n}}$(λ為非零常數(shù)),問是否存在整數(shù)λ,使得對任意n∈N*,都有bn+1>bn?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知1,x1,x2,7成等差數(shù)列,1,y1,y2,8成等比數(shù)列,點M(x1,y1)N(x2,y2),則直線MN的方程是( 。
A.x-y+1=0B.x-y-1=0C.x-y-7=0D.x+y-7=0

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知偶函數(shù)f(x)=ax2+(b+1)x+c(a≠0)的定義域為(b,a-1),那么ab=$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.在△ABC中,M為邊BC的中點,若$\overrightarrow{CM}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則m+n=( 。
A.1B.-1C.0D.不確定

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知O為坐標原點,過點P(0,2)的直線l與橢圓x2+2y2=2相交于不同的點A,B,求△OAB面積S的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.在復(fù)平面內(nèi),滿足z•(cos1-isin1)=1的復(fù)數(shù)z的共軛復(fù)數(shù)$\overline{z}$對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:選擇題

9.命題“若m>0,則方程x2+x-m=0有實根”與其逆命題分別是(  )
A.真命題,真命題B.真命題,假命題C.假命題,真命題D.假命題,假命題

查看答案和解析>>

科目: 來源: 題型:選擇題

8.有下列命題
①命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1<3x”;
②命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
③若函數(shù)f(x)=(x+1)(x+a)為偶函數(shù),則a=-1;
④若x>0,y>0且2x+y=1,則$\frac{1}{x}$+$\frac{1}{y}$的最小值是6
⑤設(shè)函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)x∈[0,1]時,f(x)=x+1,則f($\frac{3}{2}$)=$\frac{3}{2}$
其中所有正確說法的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:填空題

7.設(shè)一個班中有$\frac{1}{3}$的女生,$\frac{1}{5}$的三好學(xué)生,而三好學(xué)生中女生占$\frac{1}{3}$,若從此班級中任選一名代表參加夏令營活動,試問在已知沒有選上女生的條件下,選的是一位三好學(xué)生的概率是$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊答案