相關(guān)習(xí)題
 0  231629  231637  231643  231647  231653  231655  231659  231665  231667  231673  231679  231683  231685  231689  231695  231697  231703  231707  231709  231713  231715  231719  231721  231723  231724  231725  231727  231728  231729  231731  231733  231737  231739  231743  231745  231749  231755  231757  231763  231767  231769  231773  231779  231785  231787  231793  231797  231799  231805  231809  231815  231823  266669 

科目: 來(lái)源: 題型:選擇題

1.已知三次函數(shù)f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在x∈(-∞,+∞)無(wú)極值點(diǎn),則m的取值范圍是( 。
A.m<2或m>4B.m≥2或m≤4C.2≤m≤4D.2<m<4

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2lnx+$\frac{1}{2}{x^2}-({a+1})x$,a∈R.
(1)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線與x軸平行,求實(shí)數(shù)a值;
(2)若函數(shù)f(x)在區(qū)間(2,3)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(3)設(shè)x=m和x=n是函數(shù)f(x)的兩個(gè)極值點(diǎn),其中m<n,若a≥$\sqrt{2e}+\sqrt{\frac{2}{e}}$-1,求證:f(n)-f(m)≤2-e+$\frac{1}{e}$.(e是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn)
(1)求a的取值范圍;
(2)記兩個(gè)極值點(diǎn)x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.求下列函數(shù)的極值:y=x4-8x2+2.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.已知F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右兩個(gè)焦點(diǎn),若在雙曲線上存在點(diǎn)P,使得∠F1PF2=90°,且滿足2∠PF1F2=∠PF2F1,那么雙曲線的離心率為$\sqrt{3}$+1.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.若(x2-$\frac{1}{x}$)n展開(kāi)式的二項(xiàng)式系數(shù)之和為128,則展開(kāi)式中x2的系數(shù)為35.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.如圖,有一段長(zhǎng)為18米的屏風(fēng)ABCD(其中AB=BC=CD=6米),靠墻l圍成一個(gè)四邊形,設(shè)∠DAB=α.

(1)當(dāng)α=60°,且BC⊥CD時(shí),求AD的長(zhǎng);
(2)當(dāng)BC∥l,且AD>BC時(shí),求所圍成的等腰梯形ABCD面積的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.為了得到函數(shù)y=sin2x+cos2x的圖象,可以將函數(shù)y=$\sqrt{2}$cos2x圖象( 。
A.向右平移$\frac{π}{4}$個(gè)單位B.向右平移$\frac{π}{8}$個(gè)單位
C.向左平移$\frac{π}{4}$個(gè)單位D.向左平移$\frac{π}{8}$個(gè)單位

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.如圖,A、B是離心率為$\frac{{\sqrt{3}}}{2}$的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個(gè)頂點(diǎn),且AB=$\sqrt{5}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l平行于AB,與x,y軸分別交于點(diǎn)M,N,與橢圓相交于點(diǎn)C,D.證明:△OCM的面積等于△ODN的面積.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.已知a>0,b>0,a+2b=1,則$\frac{1}{3a+4b}+\frac{1}{a+3b}$取到最小值為$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案