相關習題
 0  231964  231972  231978  231982  231988  231990  231994  232000  232002  232008  232014  232018  232020  232024  232030  232032  232038  232042  232044  232048  232050  232054  232056  232058  232059  232060  232062  232063  232064  232066  232068  232072  232074  232078  232080  232084  232090  232092  232098  232102  232104  232108  232114  232120  232122  232128  232132  232134  232140  232144  232150  232158  266669 

科目: 來源: 題型:選擇題

6.已知某幾何體的三視圖,如圖所示,則該幾何體的體積為(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=2sin(ωx+φ),(ω>0,0<φ<π)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{3}$個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求出g(x)的對稱中心并畫出g(x)在[0,4π]上的圖象.

查看答案和解析>>

科目: 來源: 題型:填空題

4.計算${(\frac{1}{2})^{{{log}_2}3-1}}$=$\frac{2}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.某學生在上學路上要經(jīng)過3個路口,假設在各路口是否遇到紅燈時相互獨立的,遇到紅燈的概率都是$\frac{1}{3}$,遇到紅燈時停留的時間都是1分鐘,則這名學生在上學路上遇到紅燈停留的總時間至多是2分鐘的概率為( 。
A.$\frac{26}{27}$B.$\frac{8}{9}$C.$\frac{7}{9}$D.$\frac{23}{27}$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知sinα=$\frac{3}{5}$($\frac{π}{2}$<α<π),則tan2α的值為(  )
A.-3B.$-\frac{24}{7}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.等差數(shù)列{an}各項均為正數(shù),其前n項和為Sn,a2S3=75且a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)若數(shù)列{an}為遞增數(shù)列,求證:$\frac{1}{3}$≤$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+…+\frac{1}{{S}_{n}}$$<\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

10.設數(shù)列{an}滿足a1=2,an+1=2an-n+1,n∈N*
(1)求數(shù)列{an-n}的通項公式;
(2)若數(shù)列bn=$\frac{1}{{n({a_n}-{2^{n-1}}+2)}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:選擇題

9.F(x)=(x3-2x)f(x)(x≠0)是偶函數(shù),且f(x)不恒等于零,則f(x)為( 。
A.奇函數(shù)B.偶函數(shù)C.奇函數(shù)或偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目: 來源: 題型:解答題

8.某書店的銷售剛剛上市的某知名品牌的高三數(shù)學單元卷,按事先限定的價格進行5天試銷,每種單價試銷1天,得到如表數(shù)據(jù):
單價x(元)1819202122
銷量y(冊)6150504845
(1)求試銷5天的銷售量的方差和y對x的回歸直線方程;
(2)預計今后的銷售中,銷售量與單價服從(1)中的回歸方程,已知每冊單元卷的成本是14元,為了獲得最大利潤,該單元卷的單價應定為多少元?
(附:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-x)({y}_{i}-y)}{\sum_{i=1}^{n}({x}_{i}-x)}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}\overline{x}$))

查看答案和解析>>

科目: 來源: 題型:選擇題

7.如圖在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AA1=2,AC=$\sqrt{2}$,過BC的中點D作平面ACB1的垂線,交平面ACC1A1于E,則點E到平面BB1C1C的距離為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習冊答案