相關習題
 0  232381  232389  232395  232399  232405  232407  232411  232417  232419  232425  232431  232435  232437  232441  232447  232449  232455  232459  232461  232465  232467  232471  232473  232475  232476  232477  232479  232480  232481  232483  232485  232489  232491  232495  232497  232501  232507  232509  232515  232519  232521  232525  232531  232537  232539  232545  232549  232551  232557  232561  232567  232575  266669 

科目: 來源: 題型:解答題

18.設隨機變量X的分布列為P(X=$\frac{k}{5}$)=ak,(k=1,2,3,4,5)
(1)求a;
(2)求P(X≥$\frac{3}{5}$);
(3)P($\frac{1}{10}<X≤\frac{7}{10}$).

查看答案和解析>>

科目: 來源: 題型:選擇題

17.欲將方程$\frac{x^2}{4}$+$\frac{y^2}{3}$=1所對應的圖形變成方程x2+y2=1所對應的圖形,需經過伸縮變換φ為( 。
A.$\left\{\begin{array}{l}x'=2x\\ y'=\sqrt{3}y\end{array}\right.$B.$\left\{\begin{array}{l}x'=\frac{1}{2}x\\ y'=\frac{{\sqrt{3}}}{3}y\end{array}\right.$C.$\left\{\begin{array}{l}x'=4x\\ y'=3y\end{array}\right.$D.$\left\{\begin{array}{l}{x′=\frac{1}{4}x}\\{y′=\frac{1}{3}y}\end{array}\right.$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=-x3+ax2-3x,g(x)=2x2ln|x|.
(1)若函數(shù)f(x)在R上是單調函數(shù),求實數(shù)a的取值范圍;
(2)判斷函數(shù)g(x)的奇偶性,并寫出g(x)的單調區(qū)間;
(3)若對一切x∈(0,+∞),函數(shù)f(x)的圖象恒在g(x)圖象的下方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

15.拋物線y=$\frac{1}{16}$x2的焦點坐標為(0,4).

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且過點(0,1).
(Ⅰ)求橢圓的方程;
(Ⅱ)若過橢圓左頂點A的直線l與橢圓的另一交點為B.與直線x=a交于點P,求$\overrightarrow{OB}$•$\overrightarrow{OP}$的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知函數(shù)f(x)=x3+bx2+cx+d在區(qū)間[-1,2]上是減函數(shù),則( 。
A.2b+c有最大值9B.2b+c有最小值9C.2b+c有最大值-9D.2b+c有最小值-9

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+(3a-1)x+1,g(x)=alnx-x+1.
(1)若f(x)在R上不單調,求a的取值范圍.
(2)若當x≥1時,g(x)≤0恒成立,求a的取值范圍.
(3)若a≥0,令F(x)=f(x)-g(x),試討論F(x)的導函數(shù)F′(x)的零點的個數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

11.某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產量是否與年齡有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(Ⅰ)從樣本中日平均生產件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(Ⅱ)規(guī)定日平均生產件數(shù)不少于80件者為“生產能手”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“生產能手與工人所在的年齡組有關”?
P(Х2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
附:Х2=$\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$
(注:此公式也可以寫成K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

10.函數(shù)y=xlnx的單調遞增區(qū)間是( 。
A.(e-1,+∞)B.(-∞,e-1C.(0,e-1D.(e,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

9.給出命題:p:$\sqrt{2}$>1,q:y=tanx是偶函數(shù),則有三個命題:“p且q”、“p或q”、“非p”中真命題的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案