相關(guān)習(xí)題
 0  232516  232524  232530  232534  232540  232542  232546  232552  232554  232560  232566  232570  232572  232576  232582  232584  232590  232594  232596  232600  232602  232606  232608  232610  232611  232612  232614  232615  232616  232618  232620  232624  232626  232630  232632  232636  232642  232644  232650  232654  232656  232660  232666  232672  232674  232680  232684  232686  232692  232696  232702  232710  266669 

科目: 來(lái)源: 題型:選擇題

12.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=x0,g(x)=1B.f(x)=x,g(x)=$\sqrt{{x}^{2}}$
C.f(x)=$\sqrt{{x}^{2}-1}$×$\sqrt{1-{x}^{2}}$,g(x)=0,(x∈{-1,1})D.f(x)=|x|,g(x)=($\sqrt{x}$)2

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.在△ABC中,A=60°,a=$\sqrt{7}$,三角形面積為$\frac{3\sqrt{3}}{2}$,求b,c.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.在等比數(shù)列{an}中,已知a1=$\frac{1}{5}$,a3=5,則a2=(  )
A.1B.3C.±1D.±3

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.已知-$\frac{π}{2}$<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<$\frac{π}{2}$,且tanα、tanβ是方程x2+6x+7=0的兩個(gè)根,則α+β=-$\frac{3π}{4}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.若角α的終邊過(guò)點(diǎn)P(-1,3),則sinα的值為(  )
A.$\frac{3\sqrt{10}}{10}$B.-$\frac{\sqrt{10}}{10}$C.±$\frac{3\sqrt{10}}{10}$D.±$\frac{\sqrt{10}}{10}$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

7.已知橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1,直線l:y=kx-2與橢圓C交于A,B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,則直線l的方程為x-y-2=0或x+y+2=0.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

6.已知點(diǎn)P(x,y)的坐標(biāo)滿足條件$\left\{\begin{array}{l}{x≥1}\\{y≥x-1}\\{x+3y-5≤0}\end{array}\right.$,那么點(diǎn)P到直線3x-4y-13=0的最小值為2.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.非空集合G關(guān)于運(yùn)算⊕滿足:(1)對(duì)任意a,b∈G,都有a⊕b∈G;
(2)存在e∈G,使得對(duì)一切a∈G,都有a⊕e=e⊕a=a,則稱G關(guān)于運(yùn)算⊕為“融洽集”.
現(xiàn)給出下列集合和運(yùn)算:
①G={非負(fù)整數(shù)},⊕為整數(shù)的加法;
②G={偶數(shù)},⊕為整數(shù)的乘法;
③G={平面向量},⊕為平面向量的加法;
④G={二次三項(xiàng)式},⊕為多項(xiàng)式的加法;
⑤G={虛數(shù)},⊕為復(fù)數(shù)的乘法.
其中G關(guān)于運(yùn)算⊕為“融洽集”的是( 。
A.①③B.②③C.①⑤D.②③④

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.已知集合A={x|mx2+2$\sqrt{2}$x-2≤0},B={x|mx2+2$\sqrt{2}$x+1≥0},且A∩B有且僅有一個(gè)元素,則實(shí)數(shù)m的取值的集合為{-2}.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

3.下列命題中正確的個(gè)數(shù)是( 。
(1)過(guò)點(diǎn)(2,3)斜率為4的直線方程是$\frac{y-3}{x-2}$=4;
(2)極點(diǎn)O(0,0)不在曲線ρ=4cosθ上;
(3)對(duì)于函數(shù)y=f(x),在區(qū)間[a,b]上,若f′(x)≥0,則f(x)在[a,b]上為增函數(shù);
(4)對(duì)于函數(shù)y=f(x),若f′(x0)=0,則x0為其極值點(diǎn);
(5)命題“若x=2,則x2=4”的否定是“若x≠2,則x2≠4”.
A.0B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案