相關習題
 0  232853  232861  232867  232871  232877  232879  232883  232889  232891  232897  232903  232907  232909  232913  232919  232921  232927  232931  232933  232937  232939  232943  232945  232947  232948  232949  232951  232952  232953  232955  232957  232961  232963  232967  232969  232973  232979  232981  232987  232991  232993  232997  233003  233009  233011  233017  233021  233023  233029  233033  233039  233047  266669 

科目: 來源: 題型:填空題

4.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),A,B是圓(x+c)2+y2=4c2與C位于x軸上方的兩個交點,且F1A∥F2B,則雙曲線C的離心率為$\frac{3+\sqrt{17}}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+4x-3,x≤1\\ lnx,\;\;\;\;\;\;\;\;\;\;\;\;\;x>1.\end{array}$,若|f(x)|+a≥ax,則a的取值范圍是[-2,0].

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)(x∈R,且x>0),對于定義域內(nèi)任意x、y恒有f(xy)=f(x)+f(y),并且x>1時,f(x)>0恒成立.
(1)求f(1);
(2)若x∈[1,+∞)時,不等式f($\frac{{{x^2}+2x+a}}{x}$)>f(1)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

1..已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求f(x)的最大值及相應的x的取值集合.
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知a,b,c是△ABC的三邊,其面積S=$\frac{1}{{4\sqrt{3}}}$(b2+c2-a2),角A的大小是$\frac{π}{6}$.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),點(0,b)到右焦點F的距離與它到直線l:x=4的距離比恰為離心率$\frac{1}{2}$,
(1)求橢圓C的方程;
(2)設P(1,$\frac{3}{2}$),AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),設直線AB與l相交于點M,記PA,PB,PM的斜率分別為k1,k2,k3,問:是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求出λ的值,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

18.在直角坐標系中,直線l:$\left\{\begin{array}{l}x=2+tcosa\\ y=1+tsina\end{array}$(t為參數(shù),0≤a<π),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C:ρ=4cosθ.
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)已知點P(2,1),若直線l與曲線C交于A,B兩點,且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求tana.

查看答案和解析>>

科目: 來源: 題型:填空題

17.如圖,在△ABC中,∠BAC的平分線交BC于點D,交△ABC的外接圓于點E,延長AC交△DCE的外接圓于點F,DF=$\sqrt{14}$.
(Ⅰ)求BD;
(Ⅱ)若∠AEF=90°,AD=3,求DE的長.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.將二進制數(shù)11101(2)轉(zhuǎn)化為四進制數(shù),正確的是( 。
A.120(4)B.131(4)C.200(4)D.202(4)

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知0<α<π,tanα=-2,則2sin2α-sinαcosα+cos2α的值為( 。
A.$\frac{1}{2}$B.$\frac{11}{5}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

同步練習冊答案