相關(guān)習(xí)題
 0  232871  232879  232885  232889  232895  232897  232901  232907  232909  232915  232921  232925  232927  232931  232937  232939  232945  232949  232951  232955  232957  232961  232963  232965  232966  232967  232969  232970  232971  232973  232975  232979  232981  232985  232987  232991  232997  232999  233005  233009  233011  233015  233021  233027  233029  233035  233039  233041  233047  233051  233057  233065  266669 

科目: 來源: 題型:填空題

17.給出下列命題:
①在正方體上任意選擇4個(gè)不共面的頂點(diǎn),它們可能是正四面體的4個(gè)頂點(diǎn);
②底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
③若有兩個(gè)側(cè)面垂直于底面,則該四棱柱為直四棱柱;
④一個(gè)棱錐可以有兩條側(cè)棱和底面垂直;
⑤一個(gè)棱錐可以有兩個(gè)側(cè)面和底面垂直;
⑥所有側(cè)面都是正方形的四棱柱一定是正方體.
其中正確命題的序號(hào)是①⑤.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知集合A={2,4,x2-5x+9},B={3,x2+ax+a},并且2∈B,B⊆A,計(jì)算a,x的值.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{2x-y≥0}\\{y≥x}\\{4x+4y-3≥0}\end{array}}\right.$,則z=2x+y的最小值為1.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=$\sqrt{2}$,A為PB邊上一點(diǎn),且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD.
(1)求證:平面PAD⊥平面PCD.
(2)在線段PB上是否存在一點(diǎn)M,使截面AMC把幾何體分成的兩部分的體積之比為V多面體PDCMA:V三棱錐M-ACB=2:1?
(3)在M滿足(2)的條件下,判斷PD是否平行于平面AMC.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,且($\overrightarrow{a}+\overrightarrow$)⊥(2$\overrightarrow{a}-3\overrightarrow$),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.45°B.60°C.90°D.135°

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知傾斜角為α的直線l與直線x-2y+1=0垂直,則tan2α=(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.函數(shù)f(x)=x${\;}^{-\frac{1}{2}}$+ln(x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,0)B.(-1,+∞)C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知函數(shù)f(x)=(x-1)[x2+(a+2)x+a-b-2]有3個(gè)零點(diǎn)
(1)a,b滿足的關(guān)系式是a2+4b+12>0且2a-b+1≠0,
(2)若3個(gè)零點(diǎn)中其中2個(gè)可以作為橢圓和雙曲線的離心率,則a2+b2的取值范圍是(34,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知集合M={x|-2<x<4},N={x|3x>$\frac{1}{3}$},則M∩N=(-1,4),M∪N=(-2,+∞),M∩∁RN=(-2,1].

查看答案和解析>>

科目: 來源: 題型:填空題

8.函數(shù)$f(x)=\frac{1}{{{3^x}-1}}+a$(x≠0),則“f(-1)=-1”是“函數(shù)f(x)為奇函數(shù)”的充要條件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).

查看答案和解析>>

同步練習(xí)冊(cè)答案