相關(guān)習(xí)題
 0  233184  233192  233198  233202  233208  233210  233214  233220  233222  233228  233234  233238  233240  233244  233250  233252  233258  233262  233264  233268  233270  233274  233276  233278  233279  233280  233282  233283  233284  233286  233288  233292  233294  233298  233300  233304  233310  233312  233318  233322  233324  233328  233334  233340  233342  233348  233352  233354  233360  233364  233370  233378  266669 

科目: 來源: 題型:選擇題

6.雙曲線x2-4y2=4的兩個焦點(diǎn)F1、F2,P是雙曲線上的一點(diǎn),滿足PF1⊥PF2,則△F1PF2的面積為(  )
A.1B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對任意的正整數(shù)m+n=1,都有an=5Sn+1成立,記${b_n}=\frac{{4+{a_n}}}{{1-{a_n}}}\;(n∈{N^*})$.
(1)求數(shù)列{an}與數(shù)列{bn}的通項(xiàng)公式;
(2)記${C_n}={b_{2n}}-{b_{2n-1}}(n∈{N^*})$,設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對任意正整數(shù)n都有${T_n}<\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.設(shè)a+b=1,b>0,則$\frac{1}{2|a|}+\frac{|a|}$的最小值為( 。
A.$\sqrt{2}+\frac{1}{2}$B.$\sqrt{2}-\frac{1}{2}$C.$\frac{5}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.在區(qū)間(1,2)上,不等式x2+mx+4>0有解,則m的取值范圍為( 。
A.m>-4B.m<-4C.m>-5D.m<-5

查看答案和解析>>

科目: 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=asinωx+bcosωx(ω>0,a<0)的最小正周期為π,$(-\frac{π}{6},0)$是函數(shù)f(x)圖象的一個對稱中心,且曲線y=f(x)在該點(diǎn)處切線的斜率為-8.
(1)求a,b,ω的值;
(2)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值;
(3)若函數(shù)y=g(x)的圖象與函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{24}$對稱,判斷:曲線y=g(x)上是否存在與直線2x+19y+c=0(c為常數(shù))垂直的切線?證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知菱形ABCD的邊長為2,∠BAD=120°,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,$\overrightarrow{DF}=\frac{1}{3}\overrightarrow{DC}$,則$\overrightarrow{AE}•\overrightarrow{AF}$=( 。
A.$\frac{1}{2}$B.2C.1D.$\frac{1}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

20.設(shè)$sin(\frac{π}{4}+θ)=\frac{1}{3}$,則$cos(2θ+\frac{π}{2})$=( 。
A.$\frac{7}{9}$B.$\frac{1}{9}$C.$-\frac{7}{9}$D.$-\frac{1}{9}$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.若復(fù)數(shù)z滿足$\frac{{|{1+i}|}}{z}$=1-i,則復(fù)數(shù)z的共軛復(fù)數(shù)$\bar z$的虛部為( 。
A.$-\frac{{\sqrt{2}}}{2}i$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知數(shù)列{an}滿足$2{a_{n+1}}+{a_n}=3({n∈{N^*}})$,且a1=4,其前n項(xiàng)和為Sn,則滿足不等式$|{{S_n}-n-2}|<\frac{1}{30}$的最小整數(shù)n是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知A、B分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右頂點(diǎn),離心率e=$\frac{1}{2}$,右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)F重合.
(1)求橢圓C的方程;
(2)已知點(diǎn)P是橢圓C上異于A、B的動點(diǎn),直線l過點(diǎn)A且垂直于x軸,若過F作直線FQ垂直于AP,并交直線l于點(diǎn)Q,證明:Q、P、B三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊答案