相關(guān)習(xí)題
 0  233291  233299  233305  233309  233315  233317  233321  233327  233329  233335  233341  233345  233347  233351  233357  233359  233365  233369  233371  233375  233377  233381  233383  233385  233386  233387  233389  233390  233391  233393  233395  233399  233401  233405  233407  233411  233417  233419  233425  233429  233431  233435  233441  233447  233449  233455  233459  233461  233467  233471  233477  233485  266669 

科目: 來(lái)源: 題型:填空題

8.下列命題:
①直線l平行于平面α內(nèi)的無(wú)數(shù)條直線,則l∥α;
②若直線a不在平面α內(nèi),則a∥α;
③若直線a∥b,直線b?α,則a?α;
④若直線a∥b,b?α,那么直線a就平行于平面α內(nèi)的無(wú)數(shù)條直線;
⑤若直線a∥b,b∥α,則a∥α;
⑥過直線外一點(diǎn),可以作無(wú)數(shù)個(gè)平面與這條直線平行;
⑦過平面外一點(diǎn)有無(wú)數(shù)條直線與這個(gè)平面平行;
⑧若一條直線與平面平行,則它與平面內(nèi)的任何直線都平行.
其中正確的命題是③⑥⑦.(填序號(hào))

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.已知集合A={x|x 2+(2+a)x+1=0},B={x∈R|x>0},試問是否存在實(shí)數(shù)a,使得A∩B=∅?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x+1|,x∈[-2,0]}\\{2f(x-2),x∈(0,+∞)}\end{array}\right.$
(1)求函數(shù)f(x)在[-2,4]上的解析式;
(2)若方程f(x)=x+a在區(qū)間[-2,4]內(nèi)有3個(gè)等實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.函數(shù)f(x)=$\frac{2x-1}{x+3}$(x∈(-5,-4)∪(2,5)),則f(x)的值域是(-5,-1.5)∪($\frac{9}{8}$,$\frac{15}{11}$).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2+$\frac{a}{x}$(x≠0,a∈R),判斷函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知集合A={x|x=k+$\frac{1}{2}$,k∈Z},集合B={x|x=$\frac{k}{2}$+1,k∈Z},集合C={x|x=$\frac{k+1}{2}$,k∈Z},試判斷集合A、B、C的關(guān)系.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.?dāng)?shù)列{an}是公比大于1的等比數(shù)列,Sn是{an}的前n項(xiàng)和.若S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)令${_{n}}=\frac{1}{({{log}_{2}}{{a}_{n}}+1)({{log}_{2}}{{a}_{n+1}}+1)}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

1.已知lgx=2(1ga+3lgb)-$\frac{1}{2}$lgc,則x=${a}^{2}^{6}{c}^{\frac{1}{2}}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.已知集合A={1,2,3},B={2,3},則( 。
A.A=BB.B∈AC.A?BD.B?A

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

19.“a=2”是“直線(a2-a)x+y=0和直線2x+y+1=0互相平行”的充分不必要條件,若曲線y2=xy+2x+k通過點(diǎn)(a,-a)(a∈R),則k的取值范圍是$[-\frac{1}{2},+∞)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案