相關(guān)習(xí)題
 0  233661  233669  233675  233679  233685  233687  233691  233697  233699  233705  233711  233715  233717  233721  233727  233729  233735  233739  233741  233745  233747  233751  233753  233755  233756  233757  233759  233760  233761  233763  233765  233769  233771  233775  233777  233781  233787  233789  233795  233799  233801  233805  233811  233817  233819  233825  233829  233831  233837  233841  233847  233855  266669 

科目: 來源: 題型:解答題

18.如圖,已知BC是⊙O的直徑,A是⊙O上一點(diǎn),過點(diǎn)A作⊙O的切線交BC的延長(zhǎng)線于點(diǎn)P,∠APB的平分線分別交AB,AC于點(diǎn)E,D.
(Ⅰ)證明:AE=AD;
(Ⅱ)若AC=CP,求$\frac{PC}{PA}$的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)f(x)=2cos(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個(gè)單位得到的函數(shù)圖象關(guān)于y軸對(duì)稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最大值與最小值之和為( 。
A.$-\sqrt{3}$B.-1C.0D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.函數(shù)y=$\sqrt{{x^2}-2x-3}$+log3(x+2)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-1)∪(3,+∞)B.(-∞,-1)∪[3,+∞)C.(-2,1]D.(-2,-1]∪[3,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知命題:p:?x∈R,3x>0;命題:q:?x∈R,log${\;}_{\frac{1}{2}}}$x02<0.以下命題為真命題的是( 。
A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知集合M={x|x=2n-1,n∈N},N={x|-x2+x+6>0},則M∩N的非空真子集個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

13.直線x+2y-1=0的斜率是(  )
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知點(diǎn)A(2,3),B(4,1),△ABC是以AB為底邊的等腰三角形,點(diǎn)C在直線l:x-2y+2=0上.
(1)求點(diǎn)C的坐標(biāo)及S△ABC
(2)若直線l'過點(diǎn)C且與x軸、y軸正半軸分別交于P、Q兩點(diǎn),則:
①求S△POQ的最小值及此時(shí)l'的方程;
②求|PC|•|QC|的最小值及此時(shí)l'的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

11.設(shè)直線l的方程為(a-1)x+y+a+3=0,(a∈R).
(1)若直線l在兩坐標(biāo)軸上截距的絕對(duì)值相等,求直線l的方程;
(2)若直線l不經(jīng)過第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)50元;未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個(gè)開學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以x(單位:盒,100≤x≤200)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).
(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量x的中位數(shù);
(2)將y表示為x的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤(rùn)不少于4800元的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

9.如圖,直三棱柱ABC-A1B1C1的六個(gè)頂點(diǎn)都在半徑為1的半球面上,AB=AC,側(cè)面BCC1B1是半球底面圓的內(nèi)接正方形,則側(cè)面ABB1A1的面積為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案