相關習題
 0  233751  233759  233765  233769  233775  233777  233781  233787  233789  233795  233801  233805  233807  233811  233817  233819  233825  233829  233831  233835  233837  233841  233843  233845  233846  233847  233849  233850  233851  233853  233855  233859  233861  233865  233867  233871  233877  233879  233885  233889  233891  233895  233901  233907  233909  233915  233919  233921  233927  233931  233937  233945  266669 

科目: 來源: 題型:選擇題

18.定義在(0,$\frac{π}{2}$)上的函數f(x),f′(x)是它的導函數,且恒有f(x)<f′(x)tanx成立.則下列不等關系成立的是( 。
A.$\sqrt{3}$•f($\frac{π}{6}$)>2cos1•f(1)B.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)C.$\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$)D.$\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{3}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

17.下列說法正確的是(  )
A.log0.56>log0.54B.90.9>270.48C.${2.5^0}<{\frac{1}{2}^{2.5}}$D.0.60.5>0.60.3

查看答案和解析>>

科目: 來源: 題型:選擇題

16.在△ABC中,P為BC中點,若(sinC)$\overrightarrow{AC}$+(sinA)$\overrightarrow{PA}$+(sinB)$\overrightarrow{PB}$=$\overrightarrow{0}$,則△ABC的形狀為( 。
A.直角三角形B.鈍角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目: 來源: 題型:填空題

15.如圖所示,在平行四邊形ABCD中,M,N分別為DC,BC的中點,已知$\overrightarrow{AN}=\overrightarrow b,\overrightarrow{AM}=\overrightarrow c,\overrightarrow{AD}用\overrightarrow c,\overrightarrow b$表示為$\overrightarrow{AD}$=$\frac{4}{3}\overrightarrow{c}-\frac{2}{3}\overrightarrow$.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.函數f(x)=log3x-$\frac{1}{x}$的零點所在區(qū)間為(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,1)C.(1,3)D.(3,4)

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知過點P(4,1)的直線l被圓(x-3)2+y2=4所截得的弦長為$2\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

12.如圖①,已知ABCD為平行四邊形,∠A=60°,AF=2FB,AB=6,點E在CD上,EF∥BC,BD⊥AD,BD交EF于點N,現將四邊形ADEF沿EF折起,使點D在平面BCEF上的射影恰在直線BC上(如圖②),則折后直線DN與直線BF所成角的余弦值為$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知直線ax+3y+3=0和直線x+(a-2)y+1=0垂直,則a的值為$a=\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

10.為得到函數$y=2sin(2x+\frac{π}{4})$的圖象,只需將函數y=2cos2x的圖象向右平移$a(0<a<\frac{π}{2})$個單位,則a=$\frac{π}{8}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知偶函數y=f(x)是定義域為R,當x≥0時,$f(x)=\left\{\begin{array}{l}3sin\frac{π}{2}x,0≤x≤1\\{2^{2-x}}+1,x>1\end{array}\right.$.函數g(x)=x2-2ax+a2-1(a∈R).若函數y=g(f(x))有且僅有6個零點,則實數a的取值范圍為( 。
A.(1,2]B.(1,2)C.(2,3]D.(2,3)

查看答案和解析>>

同步練習冊答案