相關(guān)習(xí)題
 0  233842  233850  233856  233860  233866  233868  233872  233878  233880  233886  233892  233896  233898  233902  233908  233910  233916  233920  233922  233926  233928  233932  233934  233936  233937  233938  233940  233941  233942  233944  233946  233950  233952  233956  233958  233962  233968  233970  233976  233980  233982  233986  233992  233998  234000  234006  234010  234012  234018  234022  234028  234036  266669 

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{4x}{{x}^{2}+1}$.
(1)求曲線f(x)上任意一點(diǎn)切線的斜率的取值范圍;
(2)當(dāng)m滿足什么條件時,f(x)在區(qū)間(2m-1,m)為增函數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

4.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸為正半軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=6cosθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=-3+\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t為參數(shù)).
(1)求圓C的直角坐標(biāo)方程;
(2)求直線l分圓C所得的兩弧程度之比.

查看答案和解析>>

科目: 來源: 題型:填空題

3.${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$+x+x3)dx=$\frac{π+3}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

2.為了準(zhǔn)備里約奧運(yùn)會的選拔,甲、乙兩人進(jìn)行隊內(nèi)射箭比賽,各射4支箭,兩人4次所得環(huán)數(shù)如表:(最高為10環(huán))
6699
79xy
(Ⅰ)已知在乙的4支箭中隨機(jī)選取1支時,此支射中環(huán)數(shù)小于6環(huán)的概率不為零,且在4支箭中,乙的平均環(huán)數(shù)高于甲的平均環(huán)數(shù),求x+y的值;
(Ⅱ)如果x=6,y=10,從甲、乙兩人的4次比賽中隨機(jī)各選取1次,并將其環(huán)數(shù)分別記為a,b,求a≥b的概率;
(Ⅲ)在4次比賽中,若甲、乙兩人的平均環(huán)數(shù)相同,且乙的發(fā)揮更穩(wěn)定,寫出x的所有可能取值.(結(jié)論不要求證明)

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設(shè)集合A中含4個元素,B中含3個元素,則從A到B的映射有( 。﹤.
A.43B.34C.12D.7

查看答案和解析>>

科目: 來源: 題型:填空題

20.設(shè)集合A={x|-4<x<2},B={x|x<1},則如圖中陰影部分表示的集合為[1,2).

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知點(diǎn)P在拋物線y2=4x上,那么點(diǎn)P到點(diǎn)Q(2,-1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時,點(diǎn)P的橫坐標(biāo)為( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

18.若y=f(x)的導(dǎo)函數(shù)在區(qū)間[0,2π]上的圖象如圖所示,則f(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:填空題

17.若函數(shù)f(x)=x2的定義域為D,其值域為{0,1,2,3,4,5},則這樣的函數(shù)f(x)有243個.(用數(shù)字作答)

查看答案和解析>>

科目: 來源: 題型:填空題

16.(1)定義在(-1,1)上的奇函數(shù)f(x)為減函數(shù),且f(1-a)+f(1-a2)>0,則實數(shù)a的取值范圍為(1,$\sqrt{2}$).
(2)定義在[-2,2]上的偶函數(shù)g(x),當(dāng)x≥0時,g(x)為減函數(shù),若g(1-m)<g(m)成立,則m的取值范圍為[-1,$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊答案