相關(guān)習(xí)題
 0  234162  234170  234176  234180  234186  234188  234192  234198  234200  234206  234212  234216  234218  234222  234228  234230  234236  234240  234242  234246  234248  234252  234254  234256  234257  234258  234260  234261  234262  234264  234266  234270  234272  234276  234278  234282  234288  234290  234296  234300  234302  234306  234312  234318  234320  234326  234330  234332  234338  234342  234348  234356  266669 

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx+c(ω>0,x∈R,c是常數(shù))圖象上的一個最高點為($\frac{π}{6}$,1),與其相鄰的最低點是($\frac{2π}{3}$,-3).
(1)求函數(shù)f(x)的解析式及其對稱中心;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\overrightarrow{AB}$•$\overrightarrow{BC}$=-$\frac{1}{2}$ac,試求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

17.在等腰△ABC中,AB=AC,AC邊上的中線BD長為6,則當(dāng)△ABC的面積取得最大值時,AB的長為4$\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.將函數(shù)f(x)=sin(x+$\frac{5π}{6}$)圖象上各點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再把得到的圖象向右平移$\frac{π}{3}$個單位,得到的新圖象的函數(shù)解析式為g(x)=sin(2x+$\frac{π}{6}$),g(x)的單調(diào)遞減區(qū)間是(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$),k∈Z.

查看答案和解析>>

科目: 來源: 題型:填空題

15.若a=3${\;}^{\frac{1}{3}}$,b=log43,則log3a=$\frac{1}{3}$,a與b的大小關(guān)系是a>b.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知實數(shù)對(x,y),設(shè)映射f:(x,y)→($\frac{x+y}{2}$,$\frac{x-y}{2}$),并定義|(x,y)|=$\sqrt{{x}^{2}+{y}^{2}}$,若|f[f(f(x,y))]|=4,則|(x,y)|的值為( 。
A.4$\sqrt{2}$B.8$\sqrt{2}$C.16$\sqrt{2}$D.32$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.設(shè)函數(shù)y=xcosx-sinx的圖象上的點(x0,y0)處的切線的斜率為k,若k=g(x0),則函數(shù)k=g(x0)的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.在△ABC中,“sinB=1”是“△ABC為直角三角形”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知全集為R,集合A={x|2x≥1},B={x|x2-6x+8≤0},則A∩(∁RB)=( 。
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4}D.{x|x<2或x>4}

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=(x-t)|x|(t∈R).
(Ⅰ)當(dāng)t=2時,求函數(shù)f(x)的單調(diào)性;
(Ⅱ)試討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若?t∈(0,2),對于?x∈[-1,2],不等式f(x)>x+a都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)右頂點與右焦點的距離為$\sqrt{3}$-1,短軸長為2$\sqrt{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點F的直線與橢圓分別交于A、B兩點,若△OAB(O為直角坐標(biāo)原點)的面積為$\frac{3\sqrt{2}}{4}$,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊答案