相關(guān)習(xí)題
 0  234238  234246  234252  234256  234262  234264  234268  234274  234276  234282  234288  234292  234294  234298  234304  234306  234312  234316  234318  234322  234324  234328  234330  234332  234333  234334  234336  234337  234338  234340  234342  234346  234348  234352  234354  234358  234364  234366  234372  234376  234378  234382  234388  234394  234396  234402  234406  234408  234414  234418  234424  234432  266669 

科目: 來源: 題型:解答題

18.已知斜率為k(k≠0)的直線l交橢圓$\frac{{x}^{2}}{4}$+y2=1于M,N
(1)記直線OM,ON的斜率分別為k1,k2,當(dāng)3(k1+k2)=8k時(shí),求l經(jīng)過的定點(diǎn);
(2)若直線l過點(diǎn)D(1,0),△OMD與△OND的面積比為t,當(dāng)k2<$\frac{5}{12}$時(shí),t的取值范圍是(n1,n2),n1,n2>1,若數(shù)列的通項(xiàng)公式為$\frac{1}{({n}_{2})^{n}-0.5{n}_{1}}$,μn為其前n項(xiàng)之和,求證:μn<log34.

查看答案和解析>>

科目: 來源: 題型:填空題

17.設(shè)數(shù)列{an}前n項(xiàng)和為Sn
(1)若an=2n+1,則Sn=n2+2n,
(2)若an+Sn=1,則Sn的取值范圍是[$\frac{1}{2}$,1).

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設(shè)關(guān)于x的方程x2-mx-1=0有兩個(gè)實(shí)根α,β,α<β,函數(shù)f(x)=$\frac{2x-m}{{x}^{2}+1}$.若λ,μ均為正實(shí)數(shù),則|f($\frac{λα+μβ}{λ+μ}$)-f($\frac{μα+λβ}{λ+μ}$)|( 。﹟α-β|
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+x+\frac{7}{4},x∈[0,\frac{1}{2}]\\{x^3}+ln(\sqrt{3}e-x),x∈(\frac{1}{2},\frac{7}{4})\\-x+2,x∈[\frac{7}{4},2]\end{array}$,若${x_1}∈[0.\frac{1}{2}]$,x2=f(x1),x1=f(x2),則x1=(  )
A.$\frac{{2-\sqrt{3}}}{2}$B.$\frac{{2-\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}-1}}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

14.若x<0,則$x+\frac{1}{x}$的取值范圍是(-∞,-2].

查看答案和解析>>

科目: 來源: 題型:填空題

13.不等式$\frac{3x-2}{4x+3}≥0$的解集是(-∞,$-\frac{3}{4}$)∪[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知函數(shù)$y=\sqrt{2-x}$,則該函數(shù)的定義域?yàn)椋?∞,2].

查看答案和解析>>

科目: 來源: 題型:解答題

11.定義在R上的函數(shù)f(x)滿足f(x+2)=f(x-2)且f(-2-x)=f(-2+x),當(dāng)x∈[0,2]時(shí),$f(x)=cos\frac{π}{4}x$.
(1)求當(dāng)x∈[-4,0]時(shí),f(x)的解析式;
(2)求當(dāng)$f(x)≥\frac{1}{2}$時(shí),x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x-y+1≤0\\ x-2y-1≥0\end{array}$,則z=27-x•$\frac{1}{{3}^{y}}$的最小值為(  )
A.$\sqrt{3}$B.9C.81D.$27\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知△ABC內(nèi)接于以原點(diǎn)O為圓心半徑為1的圓,若2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$+$\sqrt{7}\stackrel{?}{OC}$=0,則∠ACB=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案