相關(guān)習(xí)題
 0  234358  234366  234372  234376  234382  234384  234388  234394  234396  234402  234408  234412  234414  234418  234424  234426  234432  234436  234438  234442  234444  234448  234450  234452  234453  234454  234456  234457  234458  234460  234462  234466  234468  234472  234474  234478  234484  234486  234492  234496  234498  234502  234508  234514  234516  234522  234526  234528  234534  234538  234544  234552  266669 

科目: 來源: 題型:選擇題

9.某校從參加高二年級學(xué)業(yè)水平測試的學(xué)生中抽出80名學(xué)生,其數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖,估計這次測試中數(shù)學(xué)成績的平均分、眾數(shù)、中位數(shù)分別是( 。
A.73.3,75,72B.72,75,73.3C.75,72,73.3D.75,73.3,72

查看答案和解析>>

科目: 來源: 題型:選擇題

8.過點P(-2,2)且垂直于直線2x-y+1=0的直線方程為(  )
A.2x+y+2=0B.2x+y-5=0C.x+2y-2=0D.x-2y+7=0

查看答案和解析>>

科目: 來源: 題型:選擇題

7.定義在R上的偶函數(shù)f(x)在(0,+∞)上單調(diào)遞減,則(  )
A.f(1)<f(-2)<f(3)B.f(3)<f(-2)<f(1)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知集合M={x|y=log2x},N={y|y=($\frac{1}{2}$)x,x>1},則M∩N=(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.

查看答案和解析>>

科目: 來源: 題型:填空題

5.在△ABC中,D為BC邊上的中點,P0是邊AB上的一個定點,P0B=$\frac{1}{4}$AB,且對于AB上任一點P,恒有$\overrightarrow{PB}$•$\overrightarrow{PC}$≥$\overrightarrow{{P}_{0}B}$•$\overrightarrow{{P}_{0}C}$,則下列結(jié)論中正確的是①②⑤(填上所有正確命題的序號).
①當(dāng)P與A,B不重合時,$\overrightarrow{PB}$+$\overrightarrow{PC}$與$\overrightarrow{PD}$共線;
②$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overline{P{D}_{2}}$-$\overrightarrow{D{B}_{2}}$;
③存在點P,使|$\overrightarrow{PD}$|<|$\overrightarrow{{P}_{0}D}$|;
④$\overrightarrow{{P}_{0}C}$•$\overrightarrow{AB}$=0;
⑤AC=BC.

查看答案和解析>>

科目: 來源: 題型:解答題

4.以坐標(biāo)原點為極點,以x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}}\right.$(θ為參數(shù),θ∈[0,π]),直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}}\right.$(t為參數(shù)).
(1)點D在曲線C上,且曲線C在點D處的切線與直線x+y+2=0垂直,求點D的極坐標(biāo);
(2)設(shè)直線l與曲線C有兩個不同的交點,求直線l的斜率的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知橢圓E:$\frac{x^2}{a^2}+{y^2}$=1(常數(shù)a>1),過點A(-a,0)且以t為斜率的直線與橢圓E交于點B,直線BO交橢圓E于點C(O坐標(biāo)原點).
(1)求以t為自變量,△ABC的面積S(t)的函數(shù)解析式;
(2)若$a=2,t∈[{\frac{1}{2},1}]$,求S(t)的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知公差不為0的等差數(shù)列{an}中,a1=7,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{3}{a_n}$,求適合方程b1b2+b2b3+…+bnbn+1=$\frac{45}{32}$的正整數(shù)n的值.

查看答案和解析>>

科目: 來源: 題型:填空題

1.在△ABC中,AB=4,AC=2$\sqrt{6}$,$\overrightarrow{AB}$•$\overrightarrow{BC}$=2,則BC=2.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.定義在R上的函數(shù)f(x)滿足:$f({x+1})=\frac{1}{f(x)}$,并且$x∈[{-1,1}],f(x)=\left\{{\begin{array}{l}{x+a,-1≤x<0}\\{|{\frac{2}{5}-x}|,0≤x<1}\end{array}}\right.$,若$f({-\frac{5}{2}})=f({\frac{9}{2}})$,則f(5a)=( 。
A.$\frac{7}{16}$B.$-\frac{2}{5}$C.$\frac{11}{16}$D.$\frac{13}{16}$

查看答案和解析>>

同步練習(xí)冊答案